Feeds:
Beiträge
Kommentare

Posts Tagged ‘Enzyme’

Letzte Woche stellten wir im ersten Teil des Interviews mit der DECHEMA-Preisträgerin 2018 Dörte Rother ihre wissenschaftliche Arbeit vor. Im zweiten Teil geht es um die Frage, wie der Schritt in die industrielle Umsetzung gelingt und warum die Chancen dafür derzeit außerhalb Deutschlands besser stehen.

Wo sehen Sie die größte Hürde bei der industriellen Umsetzung?

Die größte Hürde sind die Katalysatorkosten. Daran sind auch schon industrielle Umsetzungen mit Kooperationspartnern gescheitert. Die Enzymkaskaden selbst funktionieren sehr gut, wir halten alle Spezifikationen ein und erreichen auch die nötigen Produktkonzentrationen. Aber die Kosten für die Enzyme lassen sich schwer senken, besonders für kleinere Ansätze. Was im ganz großen Maßstab vielleicht akzeptabel wäre, ist bei Volumina von ein paar Hundert oder Tausend Liter nicht kompetitiv.

Dazu kommt, dass viele klassische pharmazeutische Firmen oft nicht die nötigen Lizenzen für Arbeiten mit gentechnisch veränderten Mikroorganismen haben. Wird die günstige Ganzzellformulierung gewählt, muss nachgewiesen werden, dass die eingesetzten Zellen wirklich tot sind, wenn sie geliefert werden, sonst sind die entsprechenden Zulassungen notwendig. Generell  treten wir gegen bestehende, lang etablierte Prozesse an. Wenn man vorhandene Prozesse verändert, braucht man besonders im Pharmabereich oft eine neue Zulassung; das kann teuer und langwierig werden.

Sie arbeiten in letzter Zeit verstärkt mit internationalen Partnern – warum?

Wir stellen fest, dass in letzter Zeit zunehmend mehr Interesse beispielsweise von chinesischen Firmen für unsere enzymatischen Ansätze kommen. In China wurden die Umweltauflagen verschärft, und es kann passieren, dass Unternehmen, die sie nicht einhalten, stillgelegt werden. Damit eröffnet sich für uns eine Chance – wir treten eben nicht gegen bestehende Referenzprozesse an und haben damit eine bessere Position, um unsere biokatalytischen Kaskaden umzusetzen.

Wie sind Sie auf dieses Forschungsgebiet gekommen?

Ich habe Biologie studiert, aber schon im Grundstudium gemerkt, dass mich der Schwerpunkt Biotechnologie besonders interessiert, und mich dann in Richtung Biokatalyse und Bioverfahrenstechnik spezialisiert. Biokatalyse eröffnet alternative Synthesemöglichkeiten mit vielen Aspekten, die für Nachhaltigkeit relevant sind. Das ist mir besonders wichtig.

Wo sehen Sie die Zukunft Ihrer Forschungsansätze?

Je reiner und komplexer das Produkt, desto ökonomischer ist ein multi-enzymatischer Prozess. Besonders im Pharmabereich lohnt es sich, mit hochselektiven Biokatalysatoren zu arbeiten, weil wir es viel mit optisch aktiven Produkten zu tun haben, die hochrein hergestellt werden müssen – da können Enzyme ihre Vorteile voll ausspielen. Bei nicht-optisch aktiven Bulkprodukten ist die chemische Synthese vielfach schneller und günstiger.

Würde man die ökologischen Kosten zusätzlich berücksichtigen, zum Beispiel über Zertifikate für CO2 oder ökologisch sensible Lösungsmittel, würde sich das Verhältnis möglicherweise zugunsten grüner Syntheseansätze aus der Chemie und verstärktem Einsatz von Enzymen (die ja selber untoxisch sind) verschieben. Wir sehen ja am chinesischen Beispiel, wie ein solcher Umbruch aussehen kann. Auch hier steigt das Bewusstsein für Nachhaltigkeits-Aspekte. Ich glaube, dass es wichtig ist, jetzt Lösungen zu entwickeln, die man hervorholen kann, wenn sie gebraucht werden. Die Autoindustrie ist da ein gutes Beispiel – es ist gut, vorbereitete Alternativen wie die Elektromobilität zu haben, die weiterentwickelt werden können, wenn sich die Rahmenbedingungen ändern, statt bei Null anzufangen.

Ich kann mir vorstellen, dass ein ähnlicher Bewusstseinswandel auch bei der Produktion von Materialien und Pharmaka kommen wird, und in diesem Bereich sehen wir uns.

https://dechema.de/Veranstaltungen/DECHEMA_Tag+2019.html

Was sind Ihre nächsten Vorhaben?

Ich glaube an die Vorteile von Enzyme, aber ich glaube, es gibt auch Fälle, wo der Einsatz chemischer Katalysatoren günstiger sein kann, nicht nur ökonomisch sondern ebenfalls in Bezug auf die Ökobilanz. So haben wir in mehrschrittigen Synthesen auch schon ein Enzym gegen Phosphatpuffer, in dem die Kaskade sowieso stattfand, ersetzen können. Da das Startsubstrat optisch sehr rein war, fand der Phosphat-vermittelte Schritt ebenfalls mit hohen Selektivitäten zu einem reinen Produkt mit drei optisch aktiven Zentren statt. Ein schönes Beispiel dafür, dass man immer den besten Katalysator verwenden sollte, der zur Verfügung steht. Egal, welcher Natur er ist. Und dies nach ökonomischen und ökologischen Kriterien bewerten sollte.

Wir arbeiten gerade mit Kooperationspartnern daran, nicht nur chemische Katalysatoren und Enzyme miteinander zu kombinieren, sondern diese in hybriden Prozessen mit mikrobiellen Zellfabriken zu koppeln. Die Zellfabriken können beispielsweise aus nachwachsenden Rohstoffen wie Bagasse sowohl die aromatischen als auch die aliphatischen Ausgangsstoffe für unsere Kaskaden herstellen. Wie sehen die Schnittstellen aus, wie lassen sich chemo-enzymatische Kaskaden mit lebenden Ganzzellkatalysatoren kombinieren, an welchen Stellen muss ich aufreinigen? – das sind sehr spannende Fragestellungen, mit denen wir uns beschäftigen.

Was wäre Ihr persönliches Traumprojekt?

Ich würde gerne zusammen mit akademischen und industriellen Partnern einen Prozess komplett von den nachwachsenden Rohstoffen bis zum hochreinen Produkt entwickeln und umsetzen, und das vom Labor bis zum Industriemaßstab. Ein solcher kompletter hybrider Prozess könnte dann als Blaupause für andere Prozesse dienen. In einigen Kooperationsprojekten sind wir auf einem guten Weg, diesem Ziel näher zu kommen.

Ich denke, wir brauchen gute Modellprozesse, damit Firmen auf den Zug aufspringen. Und dann bräuchten wir die politischen Rahmenbedingungen, um den Wandel hin zu solchen Prozessen zu vollziehen.

Auf der anderen Seite arbeiten wir aber auch am Verständnis von Enzymkaskaden im deutlich grundlagenorientierteren Bereich. Hier versuchen wir derzeit, Enzyme in ihrer Aktivität durch externe Stimuli regulieren können. Je komplexer eine Enzymkaskade wird, desto höher ist die Wahrscheinlichkeit von Nebenproduktbildungen. Wir lösen das bisher über räumliche Trennung, also Kompartimentierung und modulare Prozesse. Das geht gut. Meine Vision ist aber, alles in einem Topf durchführen zu können und die Enzyme je nach Bedarf „ein- und auszuschalten“. Am besten kombiniert mit einer Feedbackschleife, bei der die Inline-Analytik signalisiert „das erste Substrat ist aufgebraucht, schalte Stufe 2 ein“. An so einem Konzept arbeiten wir gerade. Wir möchten ausdrücklich nicht die Expression regeln, sondern das Enzym selbst, und das ist herausfordernd. Hier arbeiten wir mit Licht und Mikrotemperaturen als Stimuli und hoffen so, eines Tages einen derartig geregelten Eintopfreaktor präsentieren zu können. Einzelne Aspekte klappen bereits, aber bis alle Schritte ineinander greifen wird es noch eine Weile dauern.

Die beiden Beispiele zeigen, dass wir sowohl akademische Herausforderungen angehen als auch die (spätere) Applikation im Sinn haben. Ich finde, es ist unsere Aufgabe als Wissenschaftler, auch die Anwendung zu sehen und zu versuchen, die Ergebnisse in neue Technologien umzusetzen. So können wir nachhaltige Prozesse entwickln, die ökologische und ökonomische Aspekte verbinden und so bestenfalls unseren ökologischen Fußabdruck reduzieren, selbst wenn wir nicht bereit sind, an unserem bereits erworbenen hohen Lebensstandard zu rütteln. Über den letzten Punkt sollte man auch diskutieren – aber das ist eine ganz andere Geschichte.

Wenn Sie mehr über die Arbeit von Dörte Rother erfahren oder mir ihr ins Gespräch kommen möchten – kommen Sie zum DECHEMA-Tag 2019 am 23. Mai 2019 ins DECHEMA-Haus!

Read Full Post »

Dörte Rother erhält am 23. Mai 2019 den DECHEMA-Preis 2018

Chirale Substanzen selektiv herstellen – was für den „klassischen“ Chemiker eine der größten Herausforderungen ist und in der chemischen Katalyse im wahrsten Sinne des Wortes hochkomplexe Strukturen erfordert, leisten Enzyme quasi im Handumdrehen. Dennoch ist ihre industrielle Anwendung alles andere als trivial, alleine schon wegen der Kosten. Wir sprachen mit der DECHEMA-Preisträgerin 2018 Prof. Dr. Dörte Rother über ihre wissenschaftliche Arbeit, die Herausforderungen bei der Umsetzung und ihr „Traumprojekt“. Im ersten Teil erklärt sie uns ihre Vorgehensweise, um auf Basis synthetischer Enzymkaskaden wettbewerbsfähige Prozesse zu entwickeln.

Worum geht es in Ihrer wissenschaftlichen Arbeit?

Wir arbeiten an synthetischen Enzymkaskaden. Das bedeutet, dass Enzyme miteinander kombiniert werden, die in der Natur so nicht vorkommen. Beim Metabolic Engineering werden Enzyme kombiniert, die zumindest teilweise auch in der Natur gemeinsam in synthetischen Pathways auftreten. Unser Ansatz ist, für jeden Syntheseschritt den besten Katalysator zu finden (der übrigens auch mal ein chemischer Katalysator sein kann) und diese dann zu kombinieren. Der „Baukasten“, den wir dafür nutzen, enthält Enzyme, die alle ungefähr die gleiche Reaktion unterstützen, aber sich in ihren Selektivitäten ein bisschen unterschieden. So werden leicht unterschiedliche Substrate akzeptiert oder die gewonnenen Produkte unterscheiden sich hinsichtlich ihrer optischen Aktivität – das ist besonders für den Pharmabereich sehr relevant. Wenn ich diese Enzyme mit ihren verschiedenen Selektivitäten kombiniere, bekomme ich nicht nur ein Produkt, sondern habe eine Technologieplattform für eine ganze Bandbreite von Produkten.

https://dechema.de/Veranstaltungen/DECHEMA_Tag+201

Arbeiten Sie dabei zellfrei?

Zellfrei zu arbeiten ist der einfachste Weg, aber: wir möchten die Lücke zwischen Grundlagenforschung und Anwendung schließen und unsere Kaskaden in industrielle Prozesse bringen. Das heißt, wir müssen ähnlich hohe Produktkonzentrationen erzielen wie in chemischen Synthesen, ohne deutlich teurer zu werden. Enzyme sind sehr selektiv und arbeiten unter ökologisch vorteilhaften Bedingungen – keine hohen Drücke, keine toxischen Additive, moderate Temperaturen; das sind Pluspunkte, besonders, wenn die Nachhaltigkeit im Fokus steht. Zudem sind Biokatalysatoren einfach durch Erwärmung inaktivierbar, ohne toxische Abfälle zu hinterlassen. Lauter gute Gründe, Enzyme als Katalysatoren einzusetzen.  Aber die Herstellungskosten für Enzyme sind hoch, besonders für gereinigte Enzyme. Deshalb arbeiten wir, wenn möglich, mit ganzen, oft gefriergetrockneten Zellen. Das ist circa 10fach günstiger. Diese Zellen können auch wiederverwertet oder kontinuierlich eingesetzt werden. Dazu kann man die ganzen Zellen zurückhalten oder auch gereinigte Enzym immobilisieren. Letzteres sollte möglichst kombiniert werden – also Aufreinigung und Immobilisierung in einem Schritt – alles andere ist kaum wettbewerbsfähig.

Wie genau funktioniert Ihr Ganzzellverfahren?

Die Zellen, die wir einsetzen,  sind gefriergetrocknet und daher überwiegend nicht mehr lebensfähig. Eigentlich ist das die einfachste Form der Immobilisierung: Die Enzyme, die in hohen Konzentrationen in den Zellen vorliegen, sind etwas geschützt, wir können mit vergleichsweise hohen Substratkonzentrationen arbeiten, und die Zellen lassen sich hinterher abtrennen und wieder einsetzen. Zu den Zellen geben wir dann Substrate, Lösungsmittel und eine bestimmte Menge Puffer, um gute Umsätze zu erlangen. Zumindest bei Substraten wie Ketonen konnten wir sogar im reinen Substrat ohne Zugabe weiterer Additive arbeiten. Bei sehr reaktiven und toxischen Substraten wie Aldehyden braucht man allerdings Lösungsmittel, um Deaktivierungen zu vermeiden. Wir versuchen, in den Standardsystemen der chemischen Synthese zu arbeiten. Nur so erreichen wir hohe Produktkonzentrationen beispielsweise auch mit schwer wasserlöslichen Aromaten und können das Produkt hinterher auch wieder abtrennen.

Und wie gelangt das Substrat in die Zelle?

Wir wissen es nicht ganz genau, gehen aber davon aus, dass die Membran sehr porös oder teilweise gar nicht mehr vorhanden ist. Jedenfalls haben wir bei diesem Verfahren kaum Diffusionshemmnisse. Unter dem Elektronenmikroskop sieht man, dass die E. coli-Zelle um ca. ein Drittel geschrumpft ist, aber ihre Form behält. Zumindest in den von uns gewählten mikro-wässrigen Reaktionsbedingungen zeigten nur ca. 10 % der Zellen Löcher oder andere Veränderungen. Gerade für die Industrie sind solche Ganzzellprozesse attraktiv, und sie funktionieren gut.

Worauf achten Sie bei der Prozessentwicklung besonders?

Die nachhaltige Produktion ist mir sehr wichtig. Wir verwenden zum Beispiel Lösungsmittel, die nachhaltige Kriterien erfüllen – also nicht toxisch sind und möglichst auf Basis nachwachsender Rohstoffe hergestellt wurden. Die Biokatalyse hat eine „Kinderkrankheit“: Sie ist sehr „grün“, was die Prozessbedingungen betrifft, aber am Ende liegt das Produkt oft in niedrigen Konzentrationen in einem wässrigen System vor. Um es daraus abzutrennen, wird sehr viel Lösungsmittel benötigt. Alternativ ist es möglich, in mikro-wässrigen Reaktionssystemen zu arbeiten, so wie wir es mit den gefriergetrockneten ganzen Zellen, wenn möglich, tun, um Vorteile bei der Produktaufarbeitung zu haben.

Wir versuchen, eine effektive Aufarbeitung in die Prozessentwicklung zu integrieren. Dazu planen wir von Anfang an, wie wir das Produkt am Ende aufreinigen können, und forschen parallel an den verschiedenen Prozessschritten, um den besten Gesamtprozess zu entwickeln.

Der 2. Teil des Interviews erscheint am 2. April. Dann fragen wir nach den Hürden bei Industriekooperationen, und Dörte Rother verrät uns ihr „Traumprojekt“.

Read Full Post »

chembio

Jason Chin ist einer der Keynote-Sprecher der Tagung „Advances in Chemical Biology“ am 22. und 23. Januar 2019 in Frankfurt. Informieren Sie sich hier über das vollständige Programm

Die katalytischen Zwischenstufen enzymatischer Reaktionen kann man in manchen Fällen durch strukturanaloge Substrate des Übergangszustands stabilisieren, so dass sie kristallographisch untersucht werden können. Da sich die Analoga meistens vom natürlichen Substrat chemisch sehr unterscheiden, treten zwangsläufig Abweichungen von den tatsächlichen Verhältnissen im Reaktionszentrum auf. Jason Chin (Cambridge, UK) ist jetzt den umgekehrten Weg gegangen: Er tauschte die katalytischen Cystein- oder Serinreste von Enzymen durch Aminogruppen aus, die das natürliche Substrat stabil binden und katalytische Zwischenstufen auf diese Weise fixieren.

Konkret ersetzte er in Thioesterase-Domänen von Nicht-ribosomalen Peptid-Synthasen (NRPS) die Aminosäuren Cystein bzw. Serin der Reaktionszentren über eine Erweiterung des genetischen Codes durch die nicht-kanonische 2,3- Diaminopropionsäure (DAP). Die daraus entstehenden Aminoacyl-Komplexe aus Substrat und katalytischer Aminosäure anstelle der natürlichen  (Thio)esterverbindungen sind chemisch stabil. Im Beispiel der Thioesterase-Domäne der Valinomycin-Synthetase konnte die Biosynthese des Antibiotikums strukturell weiter aufgeklärt werden. Indem die ersten und letzten Zwischenprodukte im katalytischen Zyklus als DAP- Konjugate eingefangen werden konnten, ergaben sich neue Einblicke, wie Konformationsänderungen die Oligomerisierung und Zyklisierung linearer Substrate steuern.

Zur Publikation: https://www.nature.com/articles/d41586-018-07569-6

Read Full Post »

 Vom 28. – 30. August trafen sich auf Einladung des kooperativen Promotionskollegs „Bioressourcen und Biotechnologie“ der THM und der JLU sowie der DECHEMA-Fachgruppe „Lebensmittelbiotechnologie“ 32 Doktorandinnen und Doktoranden, Postdoktoranden und Professoren auf Schloss Rauischholzhausen, um sich fortzubilden und über die aktuellen Entwicklungen in ihren Forschungsbereichen zu diskutieren. Die Teilnehmer/innen kamen aus verschiedenen europäischen Ländern, Asien und Südamerika.

Gruppenfoto Summer School LBT 2017

Foto: Bernd Hitzmann

Ein besonderer Schwerpunkt der Summer School waren „Enzyme“, die unsere Lebensmittel schmackhafter und vor allem noch sicherer machen können. Dabei ging es um neuentdeckte Enzyme von Insekten, Bakterien und Pilzen mit teilweise faszinierenden katalytischen Eigenschaften, die in der Lebensmittelherstellung wertvolle Dienste verrichten könnten. Da die Enzyme allgemein zu den Proteinen gehören, sind sie, nach obligatorischer Überprüfung der Unbedenklichkeit von neuen Enzymen, gleichzeitig ein natürlicher Nahrungsbestandteil und vollkommen verdaubar. Weitere wichtige Themen waren die Produktion von Enzymen, gesundheitsfördernden Zuckern (Fructo- und Galactooligosacchariden) sowie Vitaminen und Aromastoffen durch Fermentationsprozesse, die mit Hilfe mathematischer Modellierung der Bedingungen ökonomisch optimiert werden können. Ebenso wären biotechnologische Verbesserungen beispielsweise bei der Kombucha- und Bierherstellung machbar.

Intensiv diskutiert wurden auch die Chancen und Risiken neuer gentechnischer Methoden wie „CRISPR/Cas“ (Clustered Regularly Interspaced Short Palindromic Repeats). Diese neue Methode, abgeschaut vom Immunsystem der Bakterien, ermöglicht es, die Genome von Produktionsorganismen noch gezielter zu verändern und damit im Sinne der Lebensmittelqualität zu verbessern. Eine anschließende Beurteilung, ob der modifizierte Organismus durch menschlichen Eingriff oder eine natürliche Mutation verändert wurde, ist kaum möglich. Die Lebensmittelsicherheit ist dadurch jedoch nicht gefährdet. Die sehr komplexen lebensmittelrechtlichen Rahmenbedingungen in Europa wurden von einem Experten der Europäischen Behörde für Lebensmittelsicherheit (EFSA) dargestellt. Hier erscheinen manche Entscheidungen aus Brüssel nicht ausschließlich wissensgesteuert, sondern bedauerlicherweise politisch motiviert.

Wertvolle Diskussionen und neue Erkenntnisse ergaben sich insbesondere durch die interdisziplinäre Zusammensetzung der Gruppe. Neben Lebensmittelchemikern trugen auch Ingenieure, Biotechnologen, Biologen, Physiker und Mathematiker zum Gelingen der dreitägigen Veranstaltung bei. Zahlreiche neue Kontakte konnten geknüpft und neue gemeinsame Projektideen entwickelt werden. Eine Fortsetzung der Summer School im Jahr 2019, dann an der Universität Hohenheim, wurde bereits beschlossen.

 

Read Full Post »

Die Pinnwand voller Polaroid-Portraits war eine der wichtigsten Anlaufstellen für die Teilnehmer des ersten DECHEMA-PRAXISforums. Denn hier ging es vor allem darum, Kontakte zu knüpfen und Gespräche zu führen und die Bilder waren eine wertvolle Hilfe dabei, aus der Menge die richtigen Ansprechpartner zu identifizieren. Mit mehr als 140 Teilnehmern von über 90 Firmen aus 15 Nationen war das DECHEMA-PRAXISforum „Enzymes for Industrial Applications“ ein gelungener Auftakt für das neue Veranstaltungsformat. Aus zwei Tagen mit Vorträgen, einer Ausstellung, vor allem aber vielen, vielen Diskussionen konnte jeder neue Ideen, neue Kontakte und wertvolle Erkenntnisse für seine Anwendung mitnehmen. Hochkarätige Redner aus Industrie und Mittelstand präsentierten in Best-Practice- und Übersichtsvorträgen die vielfältigen Anwendungsmöglichkeiten und Wachstumspotenziale für Enzyme in unterschiedlichsten Branchen. Die Resonanz war außerordentlich positiv – eine Folgeveranstaltung ist für Anfang 2017 vorgesehen.

Das neue Veranstaltungsformat, das sich in erster Linie an Anbieter und Anwender aus Industrie und Mittelstand wendet, hat damit einen furiosen Einstand gefeiert. Und das nächste PRAXISforum ist bereits in Planung: Um „Additive Fertigung/3D-Druck im Apparate- und Anlagenbau“ geht es am 29. und 30. September 2015 in Frankfurt.

Zum Terminkalender der DECHEMA-PRAXISforen

Mehr Bilder auf der DECHEMA-Homepage

Read Full Post »

Modellbau braucht Ausdauer und Konzentration - Synthesechemie auch.  (Bild: „South-Goodwin“ von Charles J Sharp - Pentax 35mm. Lizenziert unter CC BY-SA 3.0 über Wikimedia Commons - http://commons.wikimedia.org/wiki/File:South-Goodwin.jpg)

Modellbau braucht Ausdauer und Konzentration – Synthesechemie auch.
(Bild: „South-Goodwin“ von Charles J Sharp – Pentax 35mm. Lizenziert unter CC BY-SA 3.0 über Wikimedia Commons – http://commons.wikimedia.org/wiki/File:South-Goodwin.jpg)

Haben Sie schon einmal ein größeres Flugzeug- oder Schiffsmodell zusammengebaut? Dann wissen Sie, wie sich ein Chemiker fühlt, der eine größere organische Struktur aufbauen will. Da müssen Bausteine in allen möglichen verwinkelten Ecken angebracht werden; leider stößt man dabei gegen Verstrebungen, die schon aufgebaut waren und jetzt wieder zusammenbrechen, das neue Bauteil ist außerdem lose, der Kleber klebt, aber nicht dort, wo er soll… Sie wissen schon.

Während beim Schiffsmodell meistens ein Klebstoff genügt, muss der Chemiker außerdem sehr unterschiedliche Methoden nutzen, um Bauteile zu „befestigen“. Eine der wichtigsten ist der Einsatz von Persäuren, um sauerstoffhaltige Gruppen aufzubauen. Zu den Zielmolekülen gehören Epoxide, Ester, Aldehyde und Ketone, die in allen möglichen Produkten vom Lack bis zum pharmazeutischen Wirkstoff gebraucht werden.

359px-Peracid_Acid_General_Formulae_V.1

Allgemeine Formel einer Persäure im Vergleich zu einer „normalen“ Carbonsäure: Die Sauerstoff-Sauerstoff-Bindung macht sie so reaktiv

Persäuren sind hochreaktiv – leider nicht nur dort, wo das gebraucht wird, sie können auch leicht explodieren und sind für die Umwelt problematisch. Deshalb sind alternative Methoden hoch willkommen. Eine davon entwickelt das DECHEMA-Forschungsinstitut im Rahmen eines Projekts der industriellen Gemeinschaftsforschung. Die Idee: Es wird nur soviel Persäure erzeugt, wie direkt wieder verbraucht wird, und das direkt dort, wo sie gebraucht wird („in situ“). Dafür werden bestimmte Enzyme aus der Gruppe der Hydrolasen eingesetzt. Hydrolasen dienen eigentlich vor allem dazu, Moleküle aufzuspalten. Unter geeigneten Bedingungen können sie jedoch auch eine ganze Reihe anderer Reaktionen katalysieren zum Beispiel die von Wasserstoffperoxid und einer organischen Säure zur Persäure. Damit das möglichst lange funktioniert, muss die Konzentration von Wasserstoffperoxid niedrig sein. Die Wissenschaftler erzeugen deshalb auch das Wasserstoffperoxid in situ mit Hilfe einer elektrochemischen Reaktion, also mit Hilfe von Strom.

Ziel des Projekts ist es, ein ganzes Reaktionssystem zu entwickeln: Geeignete Enzyme in einem geeigneten Reaktionsmedium mit passenden Elektroden im richtigen Reaktor. Mit einem solchen Verfahren könnte eine ganze Reihe von schwierigen Reaktionen umweltfreundlicher und genauer ablaufen, als es bisher der Fall ist. Der Werkzeugkasten des Synthesechemikers wäre um ein Multifunktionstool reicher.

Mehr zum Projekt Entwicklung einer Systemlösung für chemo-elektro-enzymatische Percarbonsäure-vermittelte Oxidationsreaktionen am Beispiel der Erzeugung chiraler Monoterpene [CEEPOx] (IGF-Nr. 17711 BG)

Read Full Post »

So wächst der Aspergillus niger ohne Mikropartikel...

… und so ohne Mikropartikel…

... und so, wenn 20g/l Talkpartikeln zugesetzt werden.

So wächst der Aspergillus niger, wenn 20g/l Talkpartikeln zugesetzt werden…

Wer freut sich schon über Schimmel? Wissenschaftler tun es! Denn filamentöse Pilze, zu denen zum Beispiel die Schimmelpilze gehören, sind die Arbeitstiere der Mikrobiologen. Bereits Anfang der 90er Jahre wurden mehr als 40 % aller industriell eingesetzten Enzyme mit ihrer Hilfe produziert[1] – dazu gehören die Enzyme in Waschmitteln ebenso wie das Lab für die Käsereifung.

Dabei hängt die Produktivität der Pilze auch davon ab, in welcher Form sie wachsen. Lässt man sie frei wuchern, neigen sie zur Agglomeration; es bilden sich „Klumpen“. Wissenschaftler haben herausgefunden, dass man dies verhindern kann, in dem man Mikropartikel in das Kulturmedium gibt, in dem die Pilze wachsen. Die Größe und die Form des Pilzwachstums lassen sich dabei durch die eingesetzten Materialien, die Größe und die Form derMikropartikel steuern. Warum das allerdings so ist, weiß man bisher nicht. Deshalb untersuchen Wissenschaftler aus Braunschweig und Frankfurt in einem Projekt der industriellen Gemeinschaftsforschung (IGF) genauer, was in den Pilzkulturen im Einzelnen passiert. Verschiedene Mikropartikel sollen auf ihre Wirksamkeit getestet werden. Gleichzeitig sollen Verfahren für die Pilzkultur mit Mikropartikeln entwickelt werden, die auch großindustriell eingesetzt werden können. Dazu zählen auch Methoden zur Zugabe, Abtrennung und Wiederverwertung der Partikel.

Nicht nur Unternehmen, die selbst mit Hilfe von filamentösen Pilzen produzieren wollen, können von den Ergebnissen des Projekts profitieren. Auch die Hersteller von Partikeln und Unternehmen aus dem Anlagenbau können die Ergebnisse nutzen, um neue Geschäftsfelder zu erschließen.

Mehr zum Projekt


[1] Tappe, H.: Transformationsmethoden für filamentöse Pilze. In: Jansohn, M. u. Rothhämel, S. (Hrsg.): Gentechnische Methoden. Eine Sammlung von Arbeitsanleitungen für das molekularbiologische Labor,  Spektrum Akademischer Verlag, 5. Auflage (2012), S. 385

Read Full Post »

Older Posts »