Feeds:
Beiträge
Kommentare

Posts Tagged ‘Elektrochemie’

innoemat-logo-100Am 23. und 24. November fand das erste Statusseminar der Förderinitiative „InnoEMat – Innovative Elektrochemie mit neuen Materialien“ in Leipzig statt. Der fachliche Austausch sowie das Knüpfen neuer Kontakte zwischen allen 17 Verbundprojekten, die vom BMBF gefördert werden, standen dabei im Mittelpunkt.

Fachleute aus den unterschiedlichsten Fachrichtungen der Elektrochemie nutzen dieses Statusseminar, um sich über die Inhalte aller InnoEMat-Verbundprojekte zu informieren und auch eigene Zwischenergebnisse zu präsentieren. So ermöglichte die Veranstaltung wertvolle Blicke über den fachlichen Tellerrand, um nicht zuletzt Impulse und Synergien für das eigene Projekt zu gewinnen. Jedes der 17 Verbundprojekte präsentierte sich mit einem eigenen Übersichtvortrag und einem Poster. Die Teilnehmer aus Industrie und Forschung verfolgten das fachlich breit gefächerten Vortragsprogramm sowie die begleitende Posterausstellung mit regem Interesse. „Bei den Vorbereitungen war uns eine möglichst angenehme Atmosphäre am Tagungsort wichtig, damit die Teilnehmer sich auch auf fachfremdem Terrain wohlfühlen und miteinander ins Gespräch kommen. Das ist uns sehr gut gelungen!“, resümiert Dr. Daniel Meyer von der Deutschen Gesellschaft für Oberflächentechnik (DGO).

05_ Gruppenbild InnoEMat.JPG

Die nicht öffentliche Veranstaltung war die erste von insgesamt drei Statusseminaren, die jährlich vom wissenschaftlichen Begleitprojekt „InnoEMatplus“ initiiert und organisiert werden. Es wird gemeinsam von der DGO, der Deutschen Gesellschaft für Materialkunde (DGM) und der DECHEMA umgesetzt und hat die Aufgabe, die Verbünde bei der Öffentlichkeitsarbeit, der Vernetzung, dem Austausch und der Verwertung ihrer Ergebnisse zu unterstützen.

Die Förderinitiative „InnoEMat – Innovative Elektrochemie mit neuen Materialien“ selbst ist Bestandteil der Hightech-Strategie der Bundesregierung und an die deutschen Kernbranchen Automobilindustrie, Medizintechnik, Luft- und Raumfahrttechnik sowie die chemische Industrie gerichtet. Mit Impulsen für neue Materialien, neue Verfahren und die Produktinnovationen von Morgen zielt das Förderprogramm auf die nachhaltige Unterstützung mittelständischer Unternehmen in Deutschland.

Elektrochemische Oberflächentechnik und Syntheseverfahren sind Forschungsschwerpunkte

 Sieben der 17 Verbundprojekte setzten sich mit der Neu- und Weiterentwicklung oberflächentechnischer Prozesse sowie neuer Anwendungsszenarien für diese auseinander. So stehen u.a. REACH-konforme Beschichtungsverfahren, die Abscheidung von Legierungsschichten aus ionischen Flüssigkeiten oder neuartige Fügeverfahren für mikroelektronische Bauteile im Fokus. Weitere fünf Verbundprojekte im Themenfeld der elektrochemischen Syntheseverfahren zielen u.a. auf die Abkürzung konventioneller, mehrstufiger Syntheseverfahren sowie auf neue Wirkmechanismen bei der Aufbereitung von industriellen  Prozessabwässern. Weitere Verbundprojekte setzen sich mit neuen Technologien für verbesserte stationäre Energiespeicher neue Sensorik für medizintechnische Anwendungen auseinander.

Spannender Impulsvortrag und kontroverse Podiumsdiskussion

Als besonderes Highlight erwartete die Teilnehmer eine anregende Podiumsdiskussion zum Thema „Elektrochemie und Energiewende: auf Kollisionskurs?“, die mit einem Impulsvortrag mit dem Titel „Innovative Elektrochemie in der Energiewende: Herausforderungen und Chancen“ von Professor Kai Sundmacher (Max-Planck-Institut für Dynamik komplexer technischer Systeme, Magdeburg) eingeleitet wurde. In seinem Vortrag griff Kai Sundmacher unter anderem verschiedene elektrochemische Prozesse auf und bewertete deren Potenzial im Kontext zu den Herausforderungen der Energiewende: „Deutschland ist das Labor der Erde und die ganze Welt blickt mit der Frage auf uns, ob wir die Energiewende schaffen“, so Sundmacher. „Zwar beträgt der Anteil Deutschlands an der weltweiten Treibhausgasemission nur ca. 2%, jedoch lassen sich in Deutschland funktionierende Konzepte auch auf China oder die USA übertragen“, so Sundmacher weiter. Die anschließende Podiumsdiskussion knüpfte an die Inhalte des Impulsvortrages an und wurde vom Auditorium rege für Diskussionsbeiträge genutzt.

Die Organisatoren ziehen positives Fazit

„Während und nach der Veranstaltung haben uns viele Teilnehmer ein äußerst positives Feedback über die Inhalte und den Ablauf des Statusseminars vermittelt. Das motiviert uns für die Vorbereitungen des 2. Statusseminars 2018 in Frankfurt“, so Dr. Daniel Meyer vom wissenschaftlichen Belgleitprojekt „InnoEMatplus“.

Weiterführende Informationen zur Förderinitiative InnoEMat, zu den Projektinhalten und den Ansprechpartnern finden Sie auf der Website www.innoemat.de.

BMBF_CMYK_Gef_L_300dpi.jpg

Advertisements

Read Full Post »

Lightning_animation_-_NOAABrennstoffzellen sind die optimalen elektrochemischen Energiewandler: sie erzeugen aus wasserstoffhaltigen Medien Strom, Wärme und Wasser und arbeiten leise und emissionsarm. Im Blickpunkt eines aktuellen Projekts der industriellen Gemeinschaftsforschung steht die Direktmethanol-Brennstoffzelle (DMFC) als Energielieferant für mobile, stationäre und portable Anwendungen. Auf dem Markt gibt es bereits Ladegeräte mit USB-Anschluss, mit denen die Betriebsdauer von GPS, Mobiltelefonen und MP3-Playern in Gegenden ohne Stromnetz verlängert werden kann. Auch in Wohnmobilen oder Booten kommen tragbare Ladegräte mit einer DMFC bereits zum Einsatz.

Als Brennstoff dient bei der DMFC Methanol, das an der Anode zu Kohlendioxid oxidiert wird. Oxidationsmittel ist der Luftsauerstoff, der an der Kathode zugeführt wird. Er reagiert mit Wasserstoff-Ionen und Elektronen zu Wasser. Die Leistungsdichte einer DMFC hängt sehr stark von den Betriebsbedingungen ab. Derzeit liegt diese zwischen 80-150 mW cm-2 bei Betriebstemperaturen zwischen 50-80°C und Atmosphärendruck. Bei höheren Temperaturen steigt die Leistung, allerdings müssen das Methanol und die Luft verdichtet werden. Dieses kostet zusätzlich Energie, erhöht die Betriebskosten und verschlechtert den Wirkungsgrad.

Wissenschaftler der Universität Stuttgart, dem Zentrum für Sonnenergie- und Wasserstoff-Forschung Baden-Württemberg und des DECHEMA-Forschungsinstituts Frankfurt entwickeln neue Zell-Komponenten für einen Temperaturbereich von 100 – 150°C. Neue Membranen auf Basis von mikrophasenseparierten Block-Co-Polymeren, einem Gewebe zur mechanischen Verstärkung der Polymermembran, erhöhen die chemische, mechanische und thermische Stabilität und verringern die unerwünschte Diffusion von Methanol. Kombiniert mit leistungsfähigen Katalysatoren sowie optimierten Medienverteilerstrukturen sollen diese den Betrieb der Kathode bei Atmosphärendruck ermöglichen. Damit wird die DMFC zu einem attraktiven regenerativen System, das wetter- und zeit-unabhängig Strom liefern kann.

Mehr zum Projekt IGF 17955 Entwicklung neuartiger MEA Komponenten für MT DMFC, betrieben bei atmosphärischem Kathodendruck

Read Full Post »

Modellbau braucht Ausdauer und Konzentration - Synthesechemie auch.  (Bild: „South-Goodwin“ von Charles J Sharp - Pentax 35mm. Lizenziert unter CC BY-SA 3.0 über Wikimedia Commons - http://commons.wikimedia.org/wiki/File:South-Goodwin.jpg)

Modellbau braucht Ausdauer und Konzentration – Synthesechemie auch.
(Bild: „South-Goodwin“ von Charles J Sharp – Pentax 35mm. Lizenziert unter CC BY-SA 3.0 über Wikimedia Commons – http://commons.wikimedia.org/wiki/File:South-Goodwin.jpg)

Haben Sie schon einmal ein größeres Flugzeug- oder Schiffsmodell zusammengebaut? Dann wissen Sie, wie sich ein Chemiker fühlt, der eine größere organische Struktur aufbauen will. Da müssen Bausteine in allen möglichen verwinkelten Ecken angebracht werden; leider stößt man dabei gegen Verstrebungen, die schon aufgebaut waren und jetzt wieder zusammenbrechen, das neue Bauteil ist außerdem lose, der Kleber klebt, aber nicht dort, wo er soll… Sie wissen schon.

Während beim Schiffsmodell meistens ein Klebstoff genügt, muss der Chemiker außerdem sehr unterschiedliche Methoden nutzen, um Bauteile zu „befestigen“. Eine der wichtigsten ist der Einsatz von Persäuren, um sauerstoffhaltige Gruppen aufzubauen. Zu den Zielmolekülen gehören Epoxide, Ester, Aldehyde und Ketone, die in allen möglichen Produkten vom Lack bis zum pharmazeutischen Wirkstoff gebraucht werden.

359px-Peracid_Acid_General_Formulae_V.1

Allgemeine Formel einer Persäure im Vergleich zu einer „normalen“ Carbonsäure: Die Sauerstoff-Sauerstoff-Bindung macht sie so reaktiv

Persäuren sind hochreaktiv – leider nicht nur dort, wo das gebraucht wird, sie können auch leicht explodieren und sind für die Umwelt problematisch. Deshalb sind alternative Methoden hoch willkommen. Eine davon entwickelt das DECHEMA-Forschungsinstitut im Rahmen eines Projekts der industriellen Gemeinschaftsforschung. Die Idee: Es wird nur soviel Persäure erzeugt, wie direkt wieder verbraucht wird, und das direkt dort, wo sie gebraucht wird („in situ“). Dafür werden bestimmte Enzyme aus der Gruppe der Hydrolasen eingesetzt. Hydrolasen dienen eigentlich vor allem dazu, Moleküle aufzuspalten. Unter geeigneten Bedingungen können sie jedoch auch eine ganze Reihe anderer Reaktionen katalysieren zum Beispiel die von Wasserstoffperoxid und einer organischen Säure zur Persäure. Damit das möglichst lange funktioniert, muss die Konzentration von Wasserstoffperoxid niedrig sein. Die Wissenschaftler erzeugen deshalb auch das Wasserstoffperoxid in situ mit Hilfe einer elektrochemischen Reaktion, also mit Hilfe von Strom.

Ziel des Projekts ist es, ein ganzes Reaktionssystem zu entwickeln: Geeignete Enzyme in einem geeigneten Reaktionsmedium mit passenden Elektroden im richtigen Reaktor. Mit einem solchen Verfahren könnte eine ganze Reihe von schwierigen Reaktionen umweltfreundlicher und genauer ablaufen, als es bisher der Fall ist. Der Werkzeugkasten des Synthesechemikers wäre um ein Multifunktionstool reicher.

Mehr zum Projekt Entwicklung einer Systemlösung für chemo-elektro-enzymatische Percarbonsäure-vermittelte Oxidationsreaktionen am Beispiel der Erzeugung chiraler Monoterpene [CEEPOx] (IGF-Nr. 17711 BG)

Read Full Post »

Enzyme sind sehr leistungsfähige Biokatalysatoren, die viele chemische Reaktionen sehr gezielt und bei vergleichsweise milden Bedingungen ermöglichen.

Das bekanntetes Hämprotein: Hämoglobin. Ein erwachsener hat ungefähr 900 g Hämoglobin in seinem Körper. [hemoglobin visualization, provided by en:user:Kku, rendered by Cn3D via Wikimedia Commons]

Viele Enzyme benötigen Elektronen, um aktiv zu sein. Will man Elektronen ganz gezielt auf das aktive Zentrum der Enzyme übertragen, bietet sich das natürliche Enzym-/Koenzym-System an; bekannte Beispiele aus dem Biologieunterricht sind Coenzym A oder Kofaktoren wie NAD oder ATP, die für den Energietransfer im Körper eine zentrale Rolle spielen. Diese Methode ist hochselektiv, aber dafür außerordentlich teuer, denn man braucht große Mengen der entsprechenden komplexen Naturstoffe bzw. muss diese aufwändig regenerieren. Hier müssen technische System helfen: am einfachsten wäre es, über eine Elektrode direkt Strom  einzusetzen. Das hätte den Vorteil, dass es relativ einfach ist, viele Elektronen zu übertragen und Strom vergleichsweise günstig und gut verfügbar ist. Der Nachteil ist jedoch, dass die Elektronen das aktive Zentrum nicht erreichen können.

Eine außerordentlich elegante Lösung ist es deshalb, das aktive Zentrum der Enzyme direkt an Elektroden zu  koppeln. Damit werden die Elektronen direkt an ihr Ziel geleitet. An genau so einem Modell arbeitet im Moment im Rahmen der Industriellen Gemeinschaftsforschung eine Arbeitsgruppe des DECHEMA-Forschungsinstituts. Die Wissenschaftler wollen Hämproteine auf Elektroden immobilisieren. Hämproteine, zu denen zum Beispiel Hämoglobin oder Cytochrome zählen, katalysieren im Körper eine ganze Reihe von Reaktionen.

Im speziellen Forschungsprojekt stehen Meerrettich-Peroxidasen im Mittelpunkt. Dabei handelt es sich um gut charakterisierte Enzyme, die nicht sehr wählerisch in Bezug auf die Herkunft von Elektronen sind. Solche Enzyme werden heute schon zur Modifizierung von Elektroden verwendet, um Peroxide, organische Hydroperoxide, Phenole, aromatische Amine oder Cyanide nachzuweisen. Bisher erfolgt die Immobilisierung mehr oder weniger ungerichtet auf

der Elektrodenoberfläche. Bei dem neuen Verfahren sollen die Proteine gezielt so angeordnet sein, dass ein optimaler Elektronenübergang zwischen Elektrode und eisenhaltiger Hämgruppe gewährleistet ist.

Zunächst geht es den Forschern vor allem um sensorische Anwendungen, also den Nachweis bestimmter Substanzen. Mittelfristig ist aber auch denkbar, die so gebundenen Proteine als Biokatalysatoren einzusetzen. Da die Häm-Proteine außerordentlich vielfältig sind, wäre ein breites Spektrum an Einsatzmöglichkeiten zugänglich.

Mehr zum Projekt

Read Full Post »