Feeds:
Beiträge
Kommentare

Posts Tagged ‘Elektrochemie’

Dass Forschungsprojekte erfolgreich sind, ist glücklicherweise keine Seltenheit. Dass sie  allerdings so erfolgreich sind, dass zwei Großunternehmen nach einem Projektjahr den Bau einer Kleinanlage ins Auge fassen, ist dann doch eher selten. Grund genug, einmal nachzufragen – bei Dr. Günter Schmid, Principal Key Expert Research Scientist bei Siemens:

GSchmidHerr Schmid, herzlichen Glückwunsch an Sie und Ihren Projektpartner Dr. Thomas Haas von Evonik – Sie sind quasi von Ihrem Erfolg überrollt worden.

Ja, das kann man sagen. Unser Projekt ist im ersten Jahr so erfolgreich gelaufen, dass wir uns entschieden haben, den nächsten Schritt zu gehen und in Richtung einer vollständig automatisierten Kleinanlage zu skalieren. Derzeit planen wir, im Dezember 2019 unsere Einzelprozesse zu verkoppeln.

Worum geht es im Projekt von Siemens und Evonik genau?

Unser Projekt heißt Rheticus und ist ein Satellitenprojekt der Kopernikus-Initiative. Wir wollen aus erneuerbaren Rohstoffen Spezialchemikalien herstellen. Die „Rohstoffe“ sind Elektronen aus erneuerbarer Energie, CO2 und Wasser. Die Energie bringen wir über eine Elektrolyse in das System: Wir elektrolysieren CO2 zu Kohlenmonoxid, Wasser zu Wasserstoff, und das verfüttern wir dann an die Bakterien.

Warum setzen Sie ausgerechnet auf ein biotechnologisches Verfahren?

Wir arbeiten mit anaeroben Bakterien, wie sie beispielsweise an „Black Smokern“ in der Tiefsee vorkommen. Wir benutzen zwei Bakterienstämme, bei denen einer der Stämme  ein Gasgemisch aus Wasserstoff, Kohlenmonoxid und Kohlendioxid zu Acetat und Ethanol umsetzt. Ein zweiter Stamm produziert aus diesen Intermediaten anschließend Butanol und Hexanol.

Die Biotechnologie bietet zwei Vorteile: Sie arbeitet sehr selektiv und effizient in der CO2 Nutzung, und sie lässt sich dezentral einsetzen, auch unabhängig von einem integrierten Chemiestandort. Wir können solche Anlagen dort aufbauen, wo auch die erneuerbaren Energien anfallen.

 

 

Wie sind Sie bei der Auswahl der Zielprodukte vorgegangen?

An dieser Frage haben wir ziemlich lang gearbeitet. Bei fossil basierten Produkten bezahlt man nur für Prozess, Transport und Förderung, aber nicht für den Energieinhalt. Bei Produkten auf Basis erneuerbarer Energie ist der Energieinhalt einer der größten Kostentreiber. Wir brauchen also Produkte, bei denen der Anteil der Energie an den Kosten möglichst gering ist, und das ist bei der Spezialchemie der Fall. Außerdem können wir mit kleineren Anlagen starten, bevor wir dann in den Bereich der Bulkchemikalien oder der Kraftstoffe eintreten.

 

Wie sauber muss das CO2 sein, das Sie einsetzen?

Die Ansprüche an das CO2 sind vergleichsweise gering. So stören viele Schwefelverbindungen oder Sauerstoff den Prozess nicht, nur Metalle, die als Katalysatorgifte wirken, müssen vorab aus dem Rauchgas entfernt werden. Wir gehen aber trotzdem davon aus, dass wir das CO2 vorher aufreinigen, denn das können wir leicht aus Luft abtrennen, während Kohlenmonoxid sehr schwer von Stickstoff und Sauerstoff zu befreien ist.

 Wo liegt die größte technische Hürde?

Im Moment sind wir in der Fermentation im 2-Liter-Maßstab und wir wollen in den Kubikmeter-Maßstab kommen. Wir müssen also sowohl die Elektrolyse als auch die Bioreaktoren scalieren. Bisher hat noch niemand einen Gas-/Gas-Elektrolyseur gebaut, schon gar nicht in diesen Größenordnungen.

Inwieweit ist die Technologie auch dazu geeignet, Schwankungen in der Stromerzeugung abzupuffern?

Die Technologie ist sehr flexibel. Wir haben Betriebsmodi entwickelt, bei denen man die Leistung rauf- und runterfahren kann. Die untere Grenze bildet ein Standby-Modus; das ist auch für die Fermentation anwendbar.

Was ist Ihr nächstes Ziel?

Bis jetzt entwickeln wir die Einzelkomponenten aus dem Labormaßstab von 10 cm² auf 300 cm² – das ist ein Riesensprung. Für die weitere Skalierung bauen wir dann mehrere Zellen – ein Stack aus etwa zehn Zellen wäre ein Zwischenschritt, mit dem man erst einmal alles demonstrieren kann, was man so braucht. Wir haben im Rahmen von Kopernikus einen kontinuierlichen Betriebsmodus entwickelt, und in 2019 wird die erste echte Kopplung mit allen Anlagen stattfinden. Ziel ist eine automatisierte Kleinanlage, die eine kleine zweistellige Tonnage pro Jahr produzieren kann. Das heißt, wir sprechen von Elektrolyseuren im Kilowattbereich und Fermentern von im Bereich von 1 m³ Größe.

Wer mehr zu den vielen Einsatzmöglichkeiten der Elektrolyse und den aktuellesten technischen Entwicklungen erfahren und sich mit anderen Experten austauschen möchte, hat dazu Gelegenheit beim PRAXISforum Electrolysis in Industry am 22. und 23. November 2018 in Frankfurt – jetzt Programm ansehen und anmelden!

Advertisements

Read Full Post »

Durch die Energiewende und den steigenden Anteil an erneuerbaren Energien mit volatiler Verfügbarkeit gewinnt die Kopplung von Energie- zu Chemiesektor neuen Schwung – und die Elektrolyse an Bedeutung. Denn die Elektrolyse ist der Schlüssel bei vielen hochaktuellen Prozessen und die entscheidende Schnittstelle zwischen Strom- und Chemiesektor.

Unter dem Stichwort „Sektorkopplung“ geht es dabei darum, Strom für die Herstellung von Kraftstoffen oder Chemikalien zu nutzen. In fast allen Verfahren spielt die Elektrolyse eine Schlüsselrolle. Dabei bildet die Wasserelektrolyse einen Schwerpunkt. Der durch die Aufspaltung von Wasser gewonnene Wasserstoff kann entweder als Energieträger beispielsweise für Brennstoffzellen eingesetzt oder in die Produktion von Chemikalien eingespeist werden. Dementsprechend vielfältig ist die Zahl der Projekte: Fast täglich wird über neue Bauvorhaben berichtet, von der lokalen Wasserstoff-KWK-Anlage bis zu Megaprojekten wie die geplanten 10- und 20-MW-Projekte, die AkzoNobel bzw. Shell Anfang 2018 angekündigt haben. Gleichzeitig schreitet die Entwicklung der Elektrolysezellen voran: Neue Elektrodenmaterialien oder Entwicklungen wie die PEM-Elektrolysezellen sorgen dafür, dass die Verfahren immer effizienter und je nach weiterer Nutzung des Wasserstoffs auch wirtschaftlich wettbewerbsfähig werden. In einem Bericht von April 2018 an das BMWi weisen Wuppertal Institut und Fraunhofer ISI jedoch darauf hin, dass die verfügbaren Elektrolyseure keine Serienprodukte sind und ein notwendiger Scale-Up schnell erfolgen muss. Daraus ergäben sich auch Chancen für den Exportmarkt.

PF Electrolysis Anzeige

Und längst richtet sich das Augenmerk nicht mehr nur auf die Wasserstoffproduktion. Auch die Co-Elektrolyse von Wasser und Kohlendioxid zu Synthesegas wird derzeit genauer untersucht. Im Forschungsprojekt Rhetikus streben Siemens und Evonik ein Verfahren zur Umwandlung von Kohlendioxid zu Butanol und Hexanol mit Hilfe von regenerativem Strom und Mikroorganismen an. Siemens liefert die Elektrolysetechnik und entwickelt dabei den ersten Gas-Gas-Elektrolyseur im industriellen Maßstab.

Auch, wenn dabei die Erzeugung werthaltiger Chemikalien im Mittelpunkt steht, bringt das Verfahren noch einen zweiten Aspekt mit, der es für die Kopplung an erneuerbare Energieträger besonders interessant macht: Es lässt sich innerhalb eines gewissen Rahmens hoch- und runterregeln und könnte damit je nach Stromangebot mehr oder weniger Energie pro Zeiteinheit nutzen.

Das gilt nur in sehr geringem Umfang für den Klassiker unter den Elektrolyseverfahren, die Chlor-Alkali-Elektrolyse. Denn das gebildete Chlor ist der Ausgangspunkt für viele weitere Chemikalien, und die Produktionsmengen können nicht ohne weiteres heruntergefahren werden. Doch selbst in diesem vermeintlich lang ausgereiften Prozess verbergen sich noch Innovationspotenziale: So konnte durch den Einsatz von Sauerstoffverzehrkathoden der Energieverbrauch bei Covestro für die Chlorherstellung um bis zu 30 % gesenkt werden.

Welche Anwendungen in der Elektrolyse aktuell auf der Tagesordnung stehen und wie sich ihre Potenziale noch besser nutzen lassen, diskutieren Anwender und Anbieter beim PRAXISforum Electrolysis in Industry am 22. und 23. November 2018 im DECHEMA-Haus, Frankfurt. Die Anmeldung für Aussteller und Teilnehmer ist geöffnet; mehr unter http://www.dechema.de/Electrolysis

 

 

Read Full Post »

innoemat-logo-100Am 23. und 24. November fand das erste Statusseminar der Förderinitiative „InnoEMat – Innovative Elektrochemie mit neuen Materialien“ in Leipzig statt. Der fachliche Austausch sowie das Knüpfen neuer Kontakte zwischen allen 17 Verbundprojekten, die vom BMBF gefördert werden, standen dabei im Mittelpunkt.

Fachleute aus den unterschiedlichsten Fachrichtungen der Elektrochemie nutzen dieses Statusseminar, um sich über die Inhalte aller InnoEMat-Verbundprojekte zu informieren und auch eigene Zwischenergebnisse zu präsentieren. So ermöglichte die Veranstaltung wertvolle Blicke über den fachlichen Tellerrand, um nicht zuletzt Impulse und Synergien für das eigene Projekt zu gewinnen. Jedes der 17 Verbundprojekte präsentierte sich mit einem eigenen Übersichtvortrag und einem Poster. Die Teilnehmer aus Industrie und Forschung verfolgten das fachlich breit gefächerten Vortragsprogramm sowie die begleitende Posterausstellung mit regem Interesse. „Bei den Vorbereitungen war uns eine möglichst angenehme Atmosphäre am Tagungsort wichtig, damit die Teilnehmer sich auch auf fachfremdem Terrain wohlfühlen und miteinander ins Gespräch kommen. Das ist uns sehr gut gelungen!“, resümiert Dr. Daniel Meyer von der Deutschen Gesellschaft für Oberflächentechnik (DGO).

05_ Gruppenbild InnoEMat.JPG

Die nicht öffentliche Veranstaltung war die erste von insgesamt drei Statusseminaren, die jährlich vom wissenschaftlichen Begleitprojekt „InnoEMatplus“ initiiert und organisiert werden. Es wird gemeinsam von der DGO, der Deutschen Gesellschaft für Materialkunde (DGM) und der DECHEMA umgesetzt und hat die Aufgabe, die Verbünde bei der Öffentlichkeitsarbeit, der Vernetzung, dem Austausch und der Verwertung ihrer Ergebnisse zu unterstützen.

Die Förderinitiative „InnoEMat – Innovative Elektrochemie mit neuen Materialien“ selbst ist Bestandteil der Hightech-Strategie der Bundesregierung und an die deutschen Kernbranchen Automobilindustrie, Medizintechnik, Luft- und Raumfahrttechnik sowie die chemische Industrie gerichtet. Mit Impulsen für neue Materialien, neue Verfahren und die Produktinnovationen von Morgen zielt das Förderprogramm auf die nachhaltige Unterstützung mittelständischer Unternehmen in Deutschland.

Elektrochemische Oberflächentechnik und Syntheseverfahren sind Forschungsschwerpunkte

 Sieben der 17 Verbundprojekte setzten sich mit der Neu- und Weiterentwicklung oberflächentechnischer Prozesse sowie neuer Anwendungsszenarien für diese auseinander. So stehen u.a. REACH-konforme Beschichtungsverfahren, die Abscheidung von Legierungsschichten aus ionischen Flüssigkeiten oder neuartige Fügeverfahren für mikroelektronische Bauteile im Fokus. Weitere fünf Verbundprojekte im Themenfeld der elektrochemischen Syntheseverfahren zielen u.a. auf die Abkürzung konventioneller, mehrstufiger Syntheseverfahren sowie auf neue Wirkmechanismen bei der Aufbereitung von industriellen  Prozessabwässern. Weitere Verbundprojekte setzen sich mit neuen Technologien für verbesserte stationäre Energiespeicher neue Sensorik für medizintechnische Anwendungen auseinander.

Spannender Impulsvortrag und kontroverse Podiumsdiskussion

Als besonderes Highlight erwartete die Teilnehmer eine anregende Podiumsdiskussion zum Thema „Elektrochemie und Energiewende: auf Kollisionskurs?“, die mit einem Impulsvortrag mit dem Titel „Innovative Elektrochemie in der Energiewende: Herausforderungen und Chancen“ von Professor Kai Sundmacher (Max-Planck-Institut für Dynamik komplexer technischer Systeme, Magdeburg) eingeleitet wurde. In seinem Vortrag griff Kai Sundmacher unter anderem verschiedene elektrochemische Prozesse auf und bewertete deren Potenzial im Kontext zu den Herausforderungen der Energiewende: „Deutschland ist das Labor der Erde und die ganze Welt blickt mit der Frage auf uns, ob wir die Energiewende schaffen“, so Sundmacher. „Zwar beträgt der Anteil Deutschlands an der weltweiten Treibhausgasemission nur ca. 2%, jedoch lassen sich in Deutschland funktionierende Konzepte auch auf China oder die USA übertragen“, so Sundmacher weiter. Die anschließende Podiumsdiskussion knüpfte an die Inhalte des Impulsvortrages an und wurde vom Auditorium rege für Diskussionsbeiträge genutzt.

Die Organisatoren ziehen positives Fazit

„Während und nach der Veranstaltung haben uns viele Teilnehmer ein äußerst positives Feedback über die Inhalte und den Ablauf des Statusseminars vermittelt. Das motiviert uns für die Vorbereitungen des 2. Statusseminars 2018 in Frankfurt“, so Dr. Daniel Meyer vom wissenschaftlichen Belgleitprojekt „InnoEMatplus“.

Weiterführende Informationen zur Förderinitiative InnoEMat, zu den Projektinhalten und den Ansprechpartnern finden Sie auf der Website www.innoemat.de.

BMBF_CMYK_Gef_L_300dpi.jpg

Read Full Post »

Lightning_animation_-_NOAABrennstoffzellen sind die optimalen elektrochemischen Energiewandler: sie erzeugen aus wasserstoffhaltigen Medien Strom, Wärme und Wasser und arbeiten leise und emissionsarm. Im Blickpunkt eines aktuellen Projekts der industriellen Gemeinschaftsforschung steht die Direktmethanol-Brennstoffzelle (DMFC) als Energielieferant für mobile, stationäre und portable Anwendungen. Auf dem Markt gibt es bereits Ladegeräte mit USB-Anschluss, mit denen die Betriebsdauer von GPS, Mobiltelefonen und MP3-Playern in Gegenden ohne Stromnetz verlängert werden kann. Auch in Wohnmobilen oder Booten kommen tragbare Ladegräte mit einer DMFC bereits zum Einsatz.

Als Brennstoff dient bei der DMFC Methanol, das an der Anode zu Kohlendioxid oxidiert wird. Oxidationsmittel ist der Luftsauerstoff, der an der Kathode zugeführt wird. Er reagiert mit Wasserstoff-Ionen und Elektronen zu Wasser. Die Leistungsdichte einer DMFC hängt sehr stark von den Betriebsbedingungen ab. Derzeit liegt diese zwischen 80-150 mW cm-2 bei Betriebstemperaturen zwischen 50-80°C und Atmosphärendruck. Bei höheren Temperaturen steigt die Leistung, allerdings müssen das Methanol und die Luft verdichtet werden. Dieses kostet zusätzlich Energie, erhöht die Betriebskosten und verschlechtert den Wirkungsgrad.

Wissenschaftler der Universität Stuttgart, dem Zentrum für Sonnenergie- und Wasserstoff-Forschung Baden-Württemberg und des DECHEMA-Forschungsinstituts Frankfurt entwickeln neue Zell-Komponenten für einen Temperaturbereich von 100 – 150°C. Neue Membranen auf Basis von mikrophasenseparierten Block-Co-Polymeren, einem Gewebe zur mechanischen Verstärkung der Polymermembran, erhöhen die chemische, mechanische und thermische Stabilität und verringern die unerwünschte Diffusion von Methanol. Kombiniert mit leistungsfähigen Katalysatoren sowie optimierten Medienverteilerstrukturen sollen diese den Betrieb der Kathode bei Atmosphärendruck ermöglichen. Damit wird die DMFC zu einem attraktiven regenerativen System, das wetter- und zeit-unabhängig Strom liefern kann.

Mehr zum Projekt IGF 17955 Entwicklung neuartiger MEA Komponenten für MT DMFC, betrieben bei atmosphärischem Kathodendruck

Read Full Post »

Modellbau braucht Ausdauer und Konzentration - Synthesechemie auch.  (Bild: „South-Goodwin“ von Charles J Sharp - Pentax 35mm. Lizenziert unter CC BY-SA 3.0 über Wikimedia Commons - http://commons.wikimedia.org/wiki/File:South-Goodwin.jpg)

Modellbau braucht Ausdauer und Konzentration – Synthesechemie auch.
(Bild: „South-Goodwin“ von Charles J Sharp – Pentax 35mm. Lizenziert unter CC BY-SA 3.0 über Wikimedia Commons – http://commons.wikimedia.org/wiki/File:South-Goodwin.jpg)

Haben Sie schon einmal ein größeres Flugzeug- oder Schiffsmodell zusammengebaut? Dann wissen Sie, wie sich ein Chemiker fühlt, der eine größere organische Struktur aufbauen will. Da müssen Bausteine in allen möglichen verwinkelten Ecken angebracht werden; leider stößt man dabei gegen Verstrebungen, die schon aufgebaut waren und jetzt wieder zusammenbrechen, das neue Bauteil ist außerdem lose, der Kleber klebt, aber nicht dort, wo er soll… Sie wissen schon.

Während beim Schiffsmodell meistens ein Klebstoff genügt, muss der Chemiker außerdem sehr unterschiedliche Methoden nutzen, um Bauteile zu „befestigen“. Eine der wichtigsten ist der Einsatz von Persäuren, um sauerstoffhaltige Gruppen aufzubauen. Zu den Zielmolekülen gehören Epoxide, Ester, Aldehyde und Ketone, die in allen möglichen Produkten vom Lack bis zum pharmazeutischen Wirkstoff gebraucht werden.

359px-Peracid_Acid_General_Formulae_V.1

Allgemeine Formel einer Persäure im Vergleich zu einer „normalen“ Carbonsäure: Die Sauerstoff-Sauerstoff-Bindung macht sie so reaktiv

Persäuren sind hochreaktiv – leider nicht nur dort, wo das gebraucht wird, sie können auch leicht explodieren und sind für die Umwelt problematisch. Deshalb sind alternative Methoden hoch willkommen. Eine davon entwickelt das DECHEMA-Forschungsinstitut im Rahmen eines Projekts der industriellen Gemeinschaftsforschung. Die Idee: Es wird nur soviel Persäure erzeugt, wie direkt wieder verbraucht wird, und das direkt dort, wo sie gebraucht wird („in situ“). Dafür werden bestimmte Enzyme aus der Gruppe der Hydrolasen eingesetzt. Hydrolasen dienen eigentlich vor allem dazu, Moleküle aufzuspalten. Unter geeigneten Bedingungen können sie jedoch auch eine ganze Reihe anderer Reaktionen katalysieren zum Beispiel die von Wasserstoffperoxid und einer organischen Säure zur Persäure. Damit das möglichst lange funktioniert, muss die Konzentration von Wasserstoffperoxid niedrig sein. Die Wissenschaftler erzeugen deshalb auch das Wasserstoffperoxid in situ mit Hilfe einer elektrochemischen Reaktion, also mit Hilfe von Strom.

Ziel des Projekts ist es, ein ganzes Reaktionssystem zu entwickeln: Geeignete Enzyme in einem geeigneten Reaktionsmedium mit passenden Elektroden im richtigen Reaktor. Mit einem solchen Verfahren könnte eine ganze Reihe von schwierigen Reaktionen umweltfreundlicher und genauer ablaufen, als es bisher der Fall ist. Der Werkzeugkasten des Synthesechemikers wäre um ein Multifunktionstool reicher.

Mehr zum Projekt Entwicklung einer Systemlösung für chemo-elektro-enzymatische Percarbonsäure-vermittelte Oxidationsreaktionen am Beispiel der Erzeugung chiraler Monoterpene [CEEPOx] (IGF-Nr. 17711 BG)

Read Full Post »

Enzyme sind sehr leistungsfähige Biokatalysatoren, die viele chemische Reaktionen sehr gezielt und bei vergleichsweise milden Bedingungen ermöglichen.

Das bekanntetes Hämprotein: Hämoglobin. Ein erwachsener hat ungefähr 900 g Hämoglobin in seinem Körper. [hemoglobin visualization, provided by en:user:Kku, rendered by Cn3D via Wikimedia Commons]

Viele Enzyme benötigen Elektronen, um aktiv zu sein. Will man Elektronen ganz gezielt auf das aktive Zentrum der Enzyme übertragen, bietet sich das natürliche Enzym-/Koenzym-System an; bekannte Beispiele aus dem Biologieunterricht sind Coenzym A oder Kofaktoren wie NAD oder ATP, die für den Energietransfer im Körper eine zentrale Rolle spielen. Diese Methode ist hochselektiv, aber dafür außerordentlich teuer, denn man braucht große Mengen der entsprechenden komplexen Naturstoffe bzw. muss diese aufwändig regenerieren. Hier müssen technische System helfen: am einfachsten wäre es, über eine Elektrode direkt Strom  einzusetzen. Das hätte den Vorteil, dass es relativ einfach ist, viele Elektronen zu übertragen und Strom vergleichsweise günstig und gut verfügbar ist. Der Nachteil ist jedoch, dass die Elektronen das aktive Zentrum nicht erreichen können.

Eine außerordentlich elegante Lösung ist es deshalb, das aktive Zentrum der Enzyme direkt an Elektroden zu  koppeln. Damit werden die Elektronen direkt an ihr Ziel geleitet. An genau so einem Modell arbeitet im Moment im Rahmen der Industriellen Gemeinschaftsforschung eine Arbeitsgruppe des DECHEMA-Forschungsinstituts. Die Wissenschaftler wollen Hämproteine auf Elektroden immobilisieren. Hämproteine, zu denen zum Beispiel Hämoglobin oder Cytochrome zählen, katalysieren im Körper eine ganze Reihe von Reaktionen.

Im speziellen Forschungsprojekt stehen Meerrettich-Peroxidasen im Mittelpunkt. Dabei handelt es sich um gut charakterisierte Enzyme, die nicht sehr wählerisch in Bezug auf die Herkunft von Elektronen sind. Solche Enzyme werden heute schon zur Modifizierung von Elektroden verwendet, um Peroxide, organische Hydroperoxide, Phenole, aromatische Amine oder Cyanide nachzuweisen. Bisher erfolgt die Immobilisierung mehr oder weniger ungerichtet auf

der Elektrodenoberfläche. Bei dem neuen Verfahren sollen die Proteine gezielt so angeordnet sein, dass ein optimaler Elektronenübergang zwischen Elektrode und eisenhaltiger Hämgruppe gewährleistet ist.

Zunächst geht es den Forschern vor allem um sensorische Anwendungen, also den Nachweis bestimmter Substanzen. Mittelfristig ist aber auch denkbar, die so gebundenen Proteine als Biokatalysatoren einzusetzen. Da die Häm-Proteine außerordentlich vielfältig sind, wäre ein breites Spektrum an Einsatzmöglichkeiten zugänglich.

Mehr zum Projekt

Read Full Post »