In der Regel werden bei Elektrolysen Flüssigkeiten wie Wasser oder in Flüssigkeiten gelöste Ionen, z.B. zu Metallen oder Chlor, umgesetzt. Was aber, wenn ein Gas elektrolytisch gespalten werden soll? Dieser Herausforderung stellen sich Wissenschaftler von Siemens im Forschungsprojekt „Rheticus“. Dabei soll mit Hilfe von Strom aus regenerativen Quellen Kohlendioxid zu Kohlenmonoxid umgesetzt werden. Bei der Entwicklung kam den Forschern der Zufall zu Hilfe, erzählt Günter Schmid, Principal Key Expert Research Scientist bei Siemens: „Kollegen von Covestro und ich habe vor einiger Zeit entdeckt, dass Sauerstoffverzehr-Kathoden aus der Chloralkalielektrolyse auch in der Lage sind, CO2 zu reduzieren. Natürlich ist einiges an Nachentwicklung notwendig, aber wir konnten in einer gemeinsamen Veröffentlichung von Evonik, Covestro und Siemens bereits eine Lebensdauer von 1200 Stunden nachweisen.“ Im Kopernikus-Satellitenprojekt Rheticus arbeiten die Unternehmen jetzt daran, diese Elektrolyse in den industriellen Maßstab zu bringen. Das gebildete CO dient dann als Grundlage für einen fermentativen Prozess, in dem Butanol und Hexanol erzeugt werden.

Quelle: http://www.siemens.com/presse
Der kontinuierliche Betrieb sei am Anfang die größere Herausforderung gewesen, erzählt Schmid: Die Elektrolysezelle basiert auf zwei Kreisläufen: Auf der Anodenseite wird Wasser oxidiert. An der Kathode wird CO2 zu CO reduziert. Eine der Herausforderungen: Die Löslichkeit von CO2 in Wasser. „In einer Limoflasche sind maximal 2 g CO2 pro Liter gelöst. Das ist nicht viel, Stromdichten von mehreren 100 mA pro cm² kann man damit nicht erreichen“, erklärt Schmid. „Deshalb setzt man die sogenannte Gasdiffusionselektrode ein.“ Deren Kern bildet ein Metall- oder Kunststoffgitter, in das ein Katalysator eingepresst wird. Dabei muss die Porengröße so bemessen sein, dass der Elektrolyt nicht hindurchläuft, aber Gas eindringen kann. Dass das CO2 den Wettbewerb um Elektronen gegen das umgebende Wasser gewinnt, obwohl an der Elektrodengrenzfläche die Relation 2 Gramm CO2 pro kg Wasser beträgt, liegt an der hohen Überspannung des Silbers gegenüber Wasserstoff – stimmt hier ein Parameter nicht, entsteht anstelle des CO vor allem Wasserstoff. „Wie man diese Faraday-Effizienz richtig „tuned“, haben wir im Projekt gelernt“, sagt Günter Schmid. Bei Design und Optimierung solcher Gasdiffusionselektroden sind zahlreiche Faktoren zu beachten – Leitfähigkeit, Morphologie, chemische Zusammensetzung, Porosität und Durchdringdruck, bei dem das Gas eindringt, aber nicht „durchblubbert“. Und natürlich spielen sie auch beim Scale-up eine entscheidende Rolle.
Um den Stromkreis zu schließen und einen kontinuierlichen Betrieb zu gewährleisten, müssen Ladungsträger zwischen Wasser und CO2 hin und her bewegt werden. „Im einfachsten Fall sollten die Protonen, die an der Anode entstehen, das Hydroxid an der Kathode neutralisierten und so hätten wir unseren Stromkreis geschlossen“, erklärt Schmid. Der Teufel liegt im Detail, denn je nachdem, welche der vorhandenen Ionen für den Ladungsausgleich sorgen, kommt es zu unerwünschten Nebenreaktionen. Über die Konzentration des Elektrolyten und die Auswahl der Membran lässt sich zwar steuern, welche Ionen zwischen den Zellen wandern. Aber die Ionen nehmen beim Durchtreten der Membran immer auch Wassermoleküle mit, und damit kommt es im Laufe des Betriebs zu Verdünnungs- und Konzentrationseffekten in den Teilzellen. Deshalb haben die Forscher ein System entwickelt, bei dem in einem externen Mischgefäß für einen Ausgleich gesorgt wird. Zudem wurde die Anode direkt auf die Membran aufgebracht, um mit einer „Zero-Gap-Anordnung“ möglichst wenig Elektrolytwiderstand zu erreichen. „Wenn das ausbalanciert ist, läuft es – auch nach 1250 Stunden war die Versuchsanordnung stabil“, erklärt Schmid.
Da es sich bei der Elektrolyse um eine Flächentechnologie handelt, steht dann als nächster Schritt für die Skalierung ins Volumen die Verschaltung mehrerer Zellen zu einem Stack an. Durch das Hintereinanderschalten der Einzelzellen mit 3-5 Volt Betriebsspannung wird der Elektrolyseur auch kompatibel zu den deutlich höheren Spannungen, die das Netz bereitstellt.
Im Rahmen des Projektes ist es gelungen, ohne Akkumulation von Nebenprodukten Stromdichten von 300 mA/cm² zu erreichen. „Damit hatten wir eine Schwelle überschritten, wo man sich sagt: Wir sollten weitermachen“, sagt Schmid. Aktuell geht es nun darum, die Plattengrößen auf 300 cm² zu erhöhen; der Wunsch der Wissenschaftler wäre eine 3 m²-Elektrode wie in der Chloralkalielektrolyse, in der allerdings 120 Jahre Entwicklung stecken. Doch Günter Schmid ist optimistisch; im Dezember 2019 soll die erste Anlage in den Testbetrieb gehen und aus erneuerbarer Energie Chemikalien erzeugen.
Wenn Sie mehr über neue Technologien und Anwendungen für Elektrolyse hören wollen, registrieren Sie sich jetzt für das PRAXISforum „Electrolysis in Industry“ am 22. und 23. November 2018 in Frankfurt.