Feeds:
Beiträge
Kommentare

Posts Tagged ‘Automation’

hand-3308188_1280Wie werden Sie in 10 Jahren arbeiten? Noch schneller, noch länger, noch öfter von unterwegs? Oder werden Roboter quasi auf Zuruf einen großen Teil dessen übernehmen, was Sie heute als lästige Notwendigkeit Ihrer Arbeitszeit wahrnehmen? Oder – auch das ist schließlich denkbar – sagen die Roboter Ihnen, was Sie als nächstes zu tun haben, geben Ihnen den Arbeitsrhythmus vor und sorgen dafür, dass Sie Ihre Zeit nicht vertrödeln?

Denkbar sind beide Szenarien allemal. Eine Studie von 2013 hat viele aufgeschreckt, die bisher davon ausgegangen waren, dass ihr Arbeitsplatz sicher sei: Danach könnten in Großbritannien 47 % der Jobs der Digitalisierung zum Opfer fallen – und betroffen sind nicht nur einfache Tätigkeiten, sondern auch Aufgaben, die heute von sehr gut ausgebildeten Facharbeitern oder sogar Universitätsabsolventen ausgefüllt werden. Wer testen will, wie groß das Risiko ist, dass zukünftig ein Roboter am eigenen Schreibtisch Platz nimmt, findet bei der BBC Antworten . Demnach ist das Risiko für den „Chemical Scientist“ mit nur 6% zwar überschaubar, aber der Chemiefacharbeiter wird mit einer Wahrscheinlichkeit von 85 % wegrationalisiert werden.

Dabei sind die Hoffnungen, die mit der Digitalisierung verknüpft sind, durchaus groß. Wer hat nicht im Labor geflucht, wenn er die Tausendste Probe pipettiert oder endlose Stunden damit zugebracht hat, Zellkulturen zu sichten? Wer hätte nicht lieber vorausgewertete und grafisch aufbereitete Daten, anstatt sich mit riesigen Tabellen voller Messwerte und Standardabweichungen herumzuschlagen? Keine Frage, auch Biotechnologen, Chemiker und Verfahrensingenieure würden viele dieser Aufgaben lieber heute als morgen Siri oder Alexa überlassen.

Ein Besuch bei Morphosys in München zeigt, wie weit diese Entwicklung schon heute gediehen ist. Das Pipettieren, Picken und Aufbereiten übernehmen hier Hochdurchsatzmaschinen. Das Laborpersonal stellt die reibungslosen Abläufe sicher, überwacht die Roboter – und es bringt den kreativen Touch hinein: Denn wenn es darum geht, einen einmal gefundenen Antikörper zu optimieren, geht derzeit noch keine Künstliche Intelligenz über das Erfahrungswissen eines menschlichen Wissenschaftlers.

Und auch für die weltweite Zusammenarbeit macht man sich die Digitalisierung gerne zunutze. Große Konzerne haben längst Teile ihrer Forschung und Entwicklung an andere Standorte verlagert. Wo die kritische Masse an klugen Köpfen vor Ort nicht mehr erreicht wird, lässt sie sich durch Vernetzung wieder herstellen. Daten können gemeinsam bearbeitet werden, und dank Augmented Reality kann der Ingenieur in Pullach die Anlage in China besichtigen, ohne um die halbe Welt fliegen zu müssen.

Im jüngsten DECHEMA-Papier „Neuer Schub für die Biotechnologie“ skizzieren die Autoren, wohin die Kombination aus Automatisierung, Miniaturisierung und Digitalisierung führen kann. Dank der Kombination aus Hochdurchsatztechnologien, der enormen Beschleunigung beim Generieren von Daten und der Möglichkeit, diese mit Hilfe von Big Data und Künstlicher Intelligenz auszuwerten, kann der Wissenschaftler sich ganz darauf konzentrieren, seine Ideen zu verwirklichen – vom designten Molekül bis zum großindustriellen Produktionsprozess.

teens-629046_1280Doch wer einen Blick in die heutige Arbeitswelt wirft, den mag auch ein leichter Schauder ankommen angesichts der Vorstellung, dass Kollege Computer bald den Takt vorgibt. Schon heute fühlt mancher sich bei allen Vorteilen, die die neuen Kommunikationswege ermöglichen, als Sklave seines E-Mail-Kontos. Von der autonomen Zeitgestaltung bis zur Selbstausbeutung ist es häufig nur ein kleiner Schritt. Und die enorme Beschleunigung der Arbeitsprozesse führt statt zu mehr Raum für kreative Ideen und konzeptionelles Arbeiten eher zum Gegenteil: Hektisches Hinterherrennen hinter Routineaufgaben wird dann zum Standard und der Stapel unerledigter Mails wächst von Woche zu Woche. Gerade die „Digital Natives“, auf die feste Arbeitszeiten und ein stationärer Schreibtisch häufig wirken wie aus Großvaters Erinnerungsalbum, werden Wege finden müssen, mit diesen neuen Anforderungen umzugehen, ohne sich darin zu verlieren. Und bei allem Vertrauen in die Technik werden auch sie ein handwerkliches Grundverständnis brauchen, damit die Anlage nicht zur „Black Box“ für ihren Betreiber wird. Das richtige Maß zwischen Kompetenzvermittlung und praktischer Übung zu finden, ist für die Hochschulen und Personalabteilungen sicher eine der größten Herausforderungen für die nächsten Jahre und Jahrzehnte.

Was die Digitalisierung noch bedeutet für Wissenschaft und Produktion, für Verfahrenstechniker, Biotechnologen und Chemiker, darum geht es in der Podiumsdiskussion „Forschung und Produktion in einer globalen Welt“ am 12. September 2018 im Rahmen der ProcessNet-Jahrestagung und DECHEMA-Jahrestagung der Biotechnologen.  Wie sehen Sie die Zukunft Ihrer Branche? Teilen Sie uns Ihre Meinung mit! Wir freuen uns auf Ihren Beitrag!

Advertisements

Read Full Post »

Follow us to the year 2040…

It’s harvesting time. After delivering the wheat to the silo, the harvesting machine delivers the straw to the plant that has been temporarily placed next to the farm. After biotechnical and chemical processing, the bio-based plastic granulate is filled and ready for shipment; over the next couple of days, it will be sold via regional shops to the consumers who use it as feed for their 3D printers at home and produce their own goods as required.

Meanwhile, at the industrial site close by, the chemical plant has switched from producing ingredients for the sun-tan lotion to synthesizing anti-freeze agents. Decoupling one module and replacing the downstream processing unit has been a matter of hours. The central software has calculated the required formulations and production parameters, and the individual components have already started to fine-tune their settings in bilateral communications.

F3 Factory Container_kleinVision, forecast or mumbo jumbo? As far-fetched as the scenario may seem, the technological foundations are being laid today: Modularisation and automation are not only taking the process industry to new levels of efficiency, but they will fundamentally change the business models of the chemical and pharmaceutical industry.

The key to the future lies in the combination of automation and modularization. Experts envision different ways on how these two developments interact: Herman Bottenberg, Zeton, is convinced that “for true flexible manufacturing for multi purpose products and when applying the modular approach both hardware and automation has to become 100% modular!” Axel Haller, ABB, says: “Modular and system independent automation is possible. The market will decide if this will be the next step into the future”.

At first sight, the performance improvements that are enabled within existing processes seem more evolutionary than revolutionary. Marc Richter, Renishaw points out the quality improvements by new techniques and the speed-up development cycles of pharmaceuticals. And Marin Valek, GE, adds: “Companies use less than 10% of the information available to be better in operations. Winners will use IIoT technology and data science to get the competitive advantage of having high predictable performance.”

The technological progress opens up two different pathways: One leads from today’s batch-based production to continuous flows. This is more than a change in process – it calls for a different conceptual approach. Alessandra Vizza, Corning: “Mindset change is required to understand that continuous flow processes are no more a new system to test but the tool to be used for cost reduction; safety; environmental impact and innovation. An appropriate solution to fine-tune chemical production needs with world behaviour and epoch constraints.”

On the other hand, modular plants offer high flexibility and the opportunity for customized or even personalized products in small volumes. This entails a fundamental change in business models. Says Mario Bott, Fraunhofer IPA: “Monolith organizational approaches in process industries will struggle to manage the challenges of mass personalization.” Yet, the chances of the necessary transformation are often underestimated.  Mark Talford, BRITEST, says that “much has been done to develop practical modular continuous production technologies, but there is still a challenge to convince decision-makers to invest. As well as new business models, we need tools and guidance to help decision-makers overcome their perceived fears.” The adaptation will certainly be worth it. Dirk Kirschneck, Microinnova, summarizes the opportunities a successful transformation offers: “Industry 4.0 delivers the bridge between the production flexibility and knowledge-based process performance. Industry 4.0 will transform the chemical industry and will lead to a new efficiency level in terms of speed, quality and resources. Radical new business models will push the chemical industry to a new performance level.”

And what is your opinion? Give us your view and discuss with the expert’s quotes and many others at the PRAXISforum “Future of Chemical and Pharmaceutical Production”…

PF Future Production 2017

Read Full Post »

anatomy-1751201.pngDie Sensortechnologie richtet sich neu aus: Sensorintelligenz, Dezentralisierung, Multisensorsysteme und Miniaturisierung sind die Anforderungen, die Sensoren zukünftig erfüllen müssen. Hintergrund für den Paradigmenwechsel in der Sensortechnologie sind neue Ansätze in der Prozesstechnik, die der Philosophie von „Industrie 4.0“ und „Internet der Dinge“ folgen: Auch in der Bioverfahrenstechnik sollen Prozesse zukünftig integriert und kontinuierlich laufen und möglichst in Echtzeit gesteuert und optimiert werden. Die Biotechnologie stellt dabei besonders hohe Ansprüche an Produktqualität und –sicherheit; gleichzeitig sind die Prozesse und Strukturen teils hochkomplex. Eine Vielzahl an Messdaten allein nützt wenig; die Datenflut muss gleichzeitig ausgewertet und die Ergebnisse in den Prozess zurückgespeist werden. Sogenannte „Smart Sensors“ sind in der Lage, nicht nur zu messen, sondern auch Aufgaben der komplexen Signalverarbeitung zu übernehmen und zusätzliche Informationen über sich und die Prozessumgebung bereitzustellen. Diese erweiterte „Sensorintelligenz“ umfasst Selbstdiagnose, die Ausführung dezentraler Logikfunktionen, die eigenständige Validitätsprüfung der Messwerte, die Selektion und Bewertung von Prozessprofilen bis hin zur Vorhersage von Prozessabläufen und die direkte Interaktion mit zugeordneten Akteuren über dezentrale Steuereinheiten. Damit die Vision des Smart Sensors Wirklichkeit werden kann, sind allerdings noch einige Hürden zu überwinden – vom Nachweis der Prozess und Produktsicherheit über Schnittstellengestaltung und Standards für Daten bis hin zur Datensicherheit.

Was genau Sensoren der Zukunft können müssen, ist nachzulesen im Positionspapier „Smarte Sensoren für die Biotechnologie“ der DECHEMA-Fachgruppe „Messen und Regeln in der Biotechnologie“

Read Full Post »