Feeds:
Beiträge
Kommentare

Archive for the ‘Verfahrenstechnik’ Category

enzymes-bannerOk, it’s not magic but “hard science” – nonetheless, the performance of enzymes in some applications is really breathtaking, especially compared to “conventional” chemical synthesis routes. As research and development advance and ever more processes make it into industrial applications, some trends emerge that might lead the way for the development of the industry.

  • Combination is key

Even though enzymes are highly selective and can perform reactions that are hardly accessible to the synthetic chemist, there are also reactions where chemical catalysts are superior. Thus, the combination of chemical and enzymatic steps is the key to efficient synthetic pathways. Researchers are working on reaction cascades in one-pot systems with compartments where different steps are performed successively without cost-intensive intermediary purifications steps. To avoid solvent incompatibilities – enzymatic reactions usually require aqueous systems, organic chemical reactions are run in organic solvents – gel matrices have been successfully employed.

  • Unlock nature’s tool kit

While “engineered” enzymes may offer perfect properties, there remain applickey-1020000_640ations e.g. in the food industry calling for naturally-occuring enzymes. Fortunately, nature’s tool kit has an almost unlimited supply of different enzymes – turning the identification into the literal search in the haystack. Modern bioinformatics, a better understanding of metabolic pathways and genome mining methods allow for the screening of tens of thousands of genomes to find the right sequence and, hence, the most appropriate natural enzyme.

  • Design your own

Thanks to growing information on the structural biology of proteins, powerful bioinformatics and the integration of databases “tailor-made” enzymes have become more easily accessible. However, designing enzymes and enzymatic systems with desired properties, is still labour-intensive and time-consuming, especially with regard to structural analyses.

  • Leash your enzyme to unleash its potentialdog-1015660_640

Currently, cost is a major hurdle for the use of enzymes, especially if they cannot or only at high cost be recovered from the reaction. Immobilisation is the solution to this problem. A number of methods is available, ranging from the adsorption or covalent binding to mostly  textile carrier materials or covalent links between the enzyme molecules. Another principle is the encapsulation of enzymes in polymer networks or membranes. However, as the performance of an enzyme depends on its tertiary and quarternary structure, enzyme activity may be influenced negatively by the immobilisation. Other problems include steric factors hindering substrate access to the catalytic center. Thus, experts are still searching for more general immobilization procedures that reduce cost and allow for more or less “standardized” process designs.

  • Regard the bigger picture

Even the best enzymatic process is limited by poor reaction technology. Reactor designs that allow for tapping the full potential of the kinetics of enzymatic reactions are still being explored. The challenge lies not least in ensuring maximum mass transfer with minimum shearing of the enzyme-carriers. Thus,chemistry-1027781_640 the cooperation of biotechnologists, organic chemists and process engineers is crucial to ensure the most efficient – and consequently competitive process.

Do you want to know more? Join the PRAXISforum “Enzymes for Industrial Applications” on 8-9 November 2016 in Frankfurt

Advertisements

Read Full Post »

Nachwuchswissenschaftler aus ganz Deutschland trafen sich zur NaWuReT-Summerschool in Bayreuth Dr.-Ing. Florian Heym, Chemische Verfahrenstechnik, Universität Bayreuth Die Verfügbarkeit von Ressourcen ist für die chemische Industrie von zentraler Bedeutung. Deshalb stellt sie der Rohstoffwandel vor große Herausforderungen. Die Umsetzung unterschiedlichster Rohstoffe stellt dabei hohe Anforderungen an die Reaktionstechnik. Zu dieser Thematik veranstaltete der Nachwuchs der […]

über Ressourcen und Rohstoffwandel – Was kann die Reaktionstechnik zur Sicherung unserer Zukunft leisten? — ProcessNet – Wir schaffen Zukunft!

Read Full Post »

Direkt zum Whitepaper Digitalisierung der Chemieindustrie

Digitalisierung ist in aller Munde – aber was damit gemeint ist, reicht vom Kühlschrank, der die Milch nachbestellt, bis zur automatisierten Fertigungsstraße, die die Stoßstange vor Montage blau, gelb oder grün lackiert. Auch in Verbindung mit der chemischen Industrie ist immer häufiger von Digitalisierung oder „Chemie 4.0“ die Rede. Das war der DECHEMA Anlass, um den Jahreswechsel 2015/16 eine Befragung in den rund 120 DECHEMA- und ProcessNet-Gremien durchzuführen und einen Thementag Digitalisierung mit deren Vertretern zu organisieren.

Digital integrierter Standort2.jpgDie Befunde waren teils überraschend: Zwar spielt Digitalisierung in fast allen Unternehmen und Organisationen eine Rolle, wurde aber bis dahin kaum in den Gremien diskutiert. Auch das Verständnis, was Digitalisierung bedeutet, ging sehr weit auseinander. High-Throughput-Technologie, „klassische“ Mess- und Regeltechnik, flexible Produktion, e-learning waren nur einige Schlagworte, die genannt wurden.

Diese Rückmeldungen und die Ergebnisse des Thementags im Februar 2016 wurden in den letzten Wochen gesichtet, geordnet und systematisiert. Die Ergebnisse wurden zudem in Beziehung gesetzt zu Papieren, die in der jüngeren Vergangenheit in verschiedenen Gremien publiziert wurden.

Daraus ist ein Whitepaper Digitalisierung entstanden, das heute kurz vorgestellt wird. Anliegen dieses Papiers ist es, die verschiedenen Themenbereiche der Digitalisierung und ihre Auswirkungen in Bezug zur chemischen Industrie zu setzen.

Auf den ersten Blick ist die chemische Industrie heute bereits in vielen Bereichen stark „digitalisiert“. Die wirklichen Veränderungen, die durch große Datenmengen, hohe Rechnerkapazitäten und neue Algorithmen möglich werden, stehen aber noch bevor:

Vermehrte Integration von Standorten und standortübergreifenden Systemen, aber auch die Entwicklung disruptiver Produktinnovationen auf Basis gewonnener Daten setzen die Kopplung interner und externer Daten (Kundendaten) voraus. Doch bislang gibt es Widerstände mit Blick auf Datensicherheit und kritisches Wissen, die diese Zusammenarbeit behindern. Diese Hürden können nur gemeinsam und auf Basis klarer Absprachen und nicht zuletzt Vertrauen überwunden werden.

Von der digitalen Transformation wird auch die modulare Produktion profitieren, da vielfach die Produktion flexibler werden muss. Modulare Produktionsanlagen können vor allem dort ihre Stärken ausspielen, wo viele unterschiedliche Reaktionsschritte nötig sind und nur geringe Mengen eines hochwertigen Produktes hergestellt werden, also insbesondere in der Fein- und Spezialchemie. Doch um eine ökonomisch sinnvolle Produktion sicherzustellen, sind noch viele Entwicklungsschritte notwendig. Insbesondere standardisierte Module und Datenschnittstellen werden benötigt, um beispielsweise ein einfaches “Plug&Play” und die digitale Kommunikation der modularen Anlagen untereinander zu ermöglichen.

Nur so ist ein schneller Austausch von Modulen möglich. Gleichzeitig gilt es auch, große Datenmengen („Big Data“), wie sie beispielsweise Echtzeitsensor-Netze liefern, zu analysieren. Für all diese Anforderungen benötigt die chemische Industrie neben der entsprechenden Hardware und geeigneten Algorithmen auch qualifiziertes Fachpersonal („Chemotroniker“, „IT-Chemiker“).

Produktionsseitig ist in der Fein- und Spezialchemie seit Jahren ein Trend zu modularer und kontinuierlicher Produktion auszumachen. Diese bei weitem noch nicht abgeschlossene Entwicklung soll der Branche dabei helfen, den zunehmend individuellen Kundenansprüchen zeitnah und ökonomisch zu entsprechen. Neuartige digitale Steuerungselemente und –software sind hierbei wichtig, um tatsächlich ökonomisch in Kleinstmengen individuell zu produzieren.

Neben all den genannten Beispielen liegt für die Chemiebranche das wahrscheinlich größte Entwicklungspotential in digitalen Service-orientierten Geschäftsmodellen. Die Weiterentwicklung der Agrarchemie hin zu einer Service-orientierten Branche, die dem Kunden einen Mehrwert durch die Kombination von Daten (Wetter, Schädlingsbefall, Bodenbeschaffenheit) und Agrarchemieprodukten verkauft, zeigt beispielhaft auf, welche Möglichkeiten in der Fein- und Spezialchemiebranche bestehen, bestehende Geschäftsmodelle weiter zu entwickeln und neue zu schaffen – unerlässliche Schritte zur Sicherung des Innovations- und Produktionsstandortes Deutschland. Wir wollen mit diesem Whitepaper auch einen Anstoß geben, die Diskussion über neue Geschäftsmodelle, die in unserer Industrie erst begonnen hat, weiter zu intensivieren und die Chancen zu nutzen.

Soweit in Kürze das Zwischenfazit des Whitepapers. Es handelt sich um eine „Work in Progress“ – auch deshalb haben wir davon abgesehen, es in gedruckter Form zu verteilen. Es ist stattdessen im DECHEMA-Blog veröffentlicht, wo wir uns Rückmeldungen und Ergänzungen aus unserer Community wünschen. Wir denken dabei auch an die Experten, die in den einzelnen Unternehmen intensiv mit der Digitalisierung befasst sind – auch wenn sich das Whitepaper im Ergebnis weniger an diese richtet, sondern eher an all die Mitarbeiterinnen und Mitarbeiter der Prozessindustrie, für die die Digitalisierung bislang ein großes, aber wenig greifbares Thema ist.

Wir freuen uns, wenn auch Sie als Fachmedien unsere Einladung annehmen, sich an der Entwicklung einer stringenten Vision einer digitalisierten Chemieindustrie zu beteiligen.

Zum whitepaper-digitalisierung_final

 

Read Full Post »

15 Antragsteller von 11 Hochschulen können sich seit 1. Juli 2016 über ein Max-Buchner-Forschungsstipendium freuen. Die geförderten Themen reichen von der Synthese von Nano-und Mikropartikeln über „gedruckte“ Protein-Gele bis hin zur enantioselektiven Synthese entzündungshemmender Wirkstoffe. Die Stipendien in Höhe von 10.000 Euro pro Vorhaben kommen Nachwuchswissenschaftlern in Chemischer Technik, Verfahrenstechnik und Biotechnologie sowie angrenzenden Gebieten zugute und sollen vor allem interdisziplinäre Ansätze fördern. Auch explorierende Arbeiten zur Vorbereitung von Anträgen bei DFG und anderen Förderorganisationen können so unterstützt werden.

Die geförderten Arbeiten 2016/2017 sind:

  • Experimentelle Untersuchungen zum Eisenoxidationsweg bei dem neuartigen acidophilen eisenoxidierenden Bakterium „Ferrovum“ sp., TU Bergakademie Freiberg
  • Biosynthese der polychlorierten Biaryl-Naturstoffe Ambigol A und B, Technische Universität München
  • Wellplate NMR System (WELLMRS), Karlsruher Institut für Technologie
  • Akustische-Resonanz-Mischtechnik in der Submerskultivierung höherer Pilze, Universität Hohenheim
  • Kontinuierliche Synthese und Modifikation komplexer Nano- und Mikropartikel in einem 1000 Watt Ultraschall-Multiphasen-Cavitator im Durchfluss, Julius-Maximilians-Universität Würzburg
  • Mechanisches Legieren zur Herstellung carbidischer MAX-Phasen und Optimierung ihrer magnetischen Eigenschaften durch Dotierung mit späteren Übergangsmetallen, Technische Universität Darmstadt
  • Neuartige Messtechnik für dreidimensionale Schaumströmung, TU Dresden
  • TAP Experimente bei Atmosphärendruck, Technische Universität Hamburg-Harburg
  • Selective synthesis of active Cu-oxo clusters in zeolites for methane activation at low temperatures, Technische Universität München
  • Synthese und Charakterisierung von Biuretderivaten zur Extraktion von Anionen, Technische Universität Dresden
  • Thermodynamische Stoffdatenmodellierung für die Simulation der Herstellung von Wertstoffen aus nachwachsenden Rohstoffen, Technische Universität Kaiserslautern
  • Neue Liganden zur enantioselektiven Synthese von entzündungshemmenden Wirkstoffen, Universität Regensburg
  • Anwendung des Bonded-Particle-Models für die Modellierung der Packungen von nicht-sphärischen Partikeln,            Technische Universität Hamburg-Harburg
  • Getriggerte Gelbildung von Proteinen – vom 3D-Druck zur verfahrenstechnischen Anwendung, Universität Hohenheim
  • Auswirkung kurzer Fasern in anisotrop-gelierenden Geweberegenerationsmatrizen auf gerichtetes Nervenzellwachstum, DWI – Leibniz Institute for Interactive Materials

Die gemeinnützige Max-Buchner-Forschungsstiftung wurde 1936 ins Leben gerufen und begründet die aktive Forschungsförderung der DECHEMA, von der sie ehrenamtlich verwaltet wird. Die Stiftung wird durch Spenden insbesondere der ACHEMA-Aussteller und Besucher finanziert. Seit ihrem Bestehen konnte die Max-Buchner-Forschungsstiftung 3750 Jahresstipendien für Forschungsarbeiten junger Wissenschaftler vergeben. Die Ergebnisse der geförderten Arbeiten stehen der Allgemeinheit zur Verfügung.

Anträge für die Förderperiode 2017/2018 können bis zum 15. September 2016 eingereicht werden: Antragseinreichung für die Förderperiode 2017/2018

 

Read Full Post »

travel-164574_1280

Nicht gleichmäßig gepackt

Chromatographie bleibt bei unseren „Projekten des Monats“ ein Dauerbrenner – kein Wunder, denn wenige Verfahren sind so vielseitig einsetzbar. Besonders für makromolekluare Bioprodukte – beispielsweise Proteine für den Einsatz in der Pharmazie – sind präparative Chromatographieverfahren das Mittel der Wahl; sie lassen sich genau auf die wertvollen Produkte anpassen und sind sehr schonend. Doch vor der chromatographischen Trennung kommt das Packen der Säule – das Einfüllen der stationären Phase. Das muss möglichst gleichmäßig geschehen, ohne Hohlräume oder Luftblasen. Allerdings mangelt es an robusten Packmethoden, und oft zeigen sie während des Betriebs eine unzureichende Stabilität. Das liegt daran, dass hydrodynamische Vorgänge während des Packens und des Langzeitbetriebs nicht berücksichtigt werden. In einem Vorhaben der industriellen Gemeinschaftsforschung wollen Wissenschaftler der TUM deshalb verbesserte Packmethoden entwickeln, damit die eingesetzten Medien über lange Zeiträume stabil bleiben. Während des Packvorgangs und des Dauerbetriebs soll dafür Ultraschall eingesetzt werden. Frequenzmodulierte, nicht-kavitierende, überlagerte Ultraschallwellen führen zu einer oszillierenden Bewegung der Chromatographiepartikel, wodurch interpartikuläre Hohlräume minimiert werden – die Teilchen werden quasi „zurechtgeruckelt“, bis sie gleichmäßig und nahezu lückenlos gepackt sind. Durch das homogenere Chromatographiebett erhöht sich unter anderem die Standzeit, also die Dauer, für die die Säule genutzt werden kann.

Chromatographieanlagen werden häufig von kleinen und mittelständischen Unternehmen (KMU) betrieben, die Auftragshersteller für die Pharma- und Chemieindustrie sind. Verbesserte Chromatographieverfahren haben für diese KMU eine hohe wirtschaftliche Bedeutung, da durch die Implementierung von neuen Konzepten deutliche Kosteneinsparungen zu erwarten sind. Hierdurch kann ein signifikanter Wettbewerbsvorteil entstehen.

Mehr zum Projekt Verbesserung der Packmethodik und der Betriebsstabilität von Chromatographieverfahren für die präparative Aufreinigung von makromolekularen Bioprodukten (18146 N)

Read Full Post »

DECHEMA-TagKeine Rohstoffknappheit mehr, keine Abhängigkeit von anderen Staaten, keine Müllhalden in Drittweltländern, auf denen mit zweifelhaften Methoden Metalle aus Elektroschrott gewonnen werden, gleichzeitig weiterhin die Annehmlichkeiten der modernen Konsumgesellschaft, und der Klimawandel kann auch noch gestoppt werden. Das sind im Kern die Visionen, die durch eine vollständige Kreislaufwirtschaft verwirklicht werden sollen. Die EU hat sich die Circular Economy auf die Fahnen geschrieben. Doch lassen sich diese Ansprüche wirklich erfüllen? Und was heißt das für Produkte und Dienstleistungen, für Hersteller und Konsumenten? Diese Fragen standen im Mittelpunkt der Diskussion beim ersten DECHEMA-Tag am 1. Juni 2016 in Frankfurt.

Und die Antworten fielen denkbar unterschiedlich aus. Das macht sich schon an Grundlagen der Circular-Economy-Idee wie „Langlebigkeit“ oder „Nachhaltigkeit“ fest: Für Dr. Eric Bischof, VP Corporate Sustainability bei Covestro Deutschland, steht Circular Economy „für den Gedanken, ein Produkt möglichst lange auf einer möglichst hohen Wertschöpfungsstufe zu halten.“ Dazu gehören eine lange Nutzungsdauer, die Reparatur und Wiederverwendung; stoffliches Recycling stelle nur die Ultima Ratio dar.

Für Prof. Dr. Michael Braungart, einen der Entwickler des Cradle-to-cradle-Konzeptes, ist Nachhaltigkeit dagegen keine Lösung, denn sie mache „nur weniger kaputt“. Eine Reduktion von 90 auf 4 Giftstoffe mache ein Produkt nicht ungiftig. Außerdem schließen sich aus seiner Sicht Nachhaltigkeit und Innovation aus: Bei einem Innovationszyklus von 8 bis 9 Jahren ist eine Lebensdauer von 30 Jahren für ein Produkt wie eine Waschmaschine ein Innovationshindernis. Stattdessen plädiert er dafür, Produkte von vornherein so zu konzipieren, dass die verwendeten Materialien und Komponenten vollständig wiederverwertet werden können – entweder im „technologischen Kreislauf“ oder über den Umweg der Kompostierung im biologischen Kreislauf.

Ressourcen ge- statt verbrauchen

Über eines waren sich allerdings alle Experten einig: An veränderten Nutzungskonzepten für Ressourcen führt kein Weg vorbei. Prof. Dr. Gerhard Sextl, Fraunhofer ISC, bringt es auf den Punkt: „Wir müssen lernen, Ressourcen zu gebrauchen statt zu verbrauchen.“ Dazu gehöre auch ein intelligentes Recycling: Es ist nicht notwendig, Materialien jedes Mal auf die Ebene der Elemente zu desintegrieren. Stattdessen können sie auf dem Niveau von Funktionswerkstoffen neu genutzt werden. Damit kann auch das Downcycling vermieden werden.

13 PodiumsteilnehmerAllerdings ist es bis dahin noch ein weiter Weg, denn die derzeit eingesetzten Produkte enthalten eine solche Vielzahl von Werkstoffen und Zusätzen, dass eine sinnvolle Trennung kaum möglich erscheint. Selbst Hersteller wissen oft nicht, welche Materialien sie in Form von Komponenten in ihren Produkten verbaut haben. Gerhard Sextl sieht eine Chance in der Digitalisierung: Jedes Produkt könnte einen „Pass“ erhalten, in dem seine Inhaltsstoffe aufgelistet sind.

Dennoch bleibt die Frage offen, ob es tatsächlich gelingen kann, alle „technologischen Rohstoffe“ vollständig im Kreis zu führen. Sicher lässt sich aus Legierungen reines Kupfer zurückgewinnen, wie Michael Braungart postuliert – allerdings kaum zu 100 %. Alle Formen der Dissipation, sei es Abrieb im Gebrauch, Verluste bei der Verarbeitung beispielsweise beim Schleifen, Bohren oder Fräsen oder eben bei der Aufarbeitung müssten vollständig ausgeschlossen werden. Auch der Ersatz von Materialien erweist sich häufig als mühsam. Prof. Dr. Rainer Grießhammer vom Öko-Institut führt als Beispiel den Recyclingbeton an, bei dem seit Jahren auf einen Anteil von 10 % hingearbeitet wird, der jedoch hartnäckig bei 4 % stagniert. Michael Braungart sieht in der Materialentwicklung eine gewaltige Chance für Chemiker und Verfahrenstechniker. Nach den Unfällen der 80er Jahre, speziell der Sandoz-Katastrophe, sei der Chemie eine ganze Generation von klugen Köpfen verloren gegangen. Die Neuentwicklung von Produkten, Materialien und Nutzungskonzepten mache Chemie und Verfahrenstechnik entscheidend. Dementsprechend wirbt er in seinen  Vorträgen um junge Leute für die Wissenschaft.

Neues Design eröffnet Möglichkeiten

Dank neuer Fügetechniken kann die Demontierbarkeit von wieder nutzbaren Komponenten oder einheitlichen Materialien sicher gestellt werden. Anne Farken, BMW Group Designworks, weist darauf hin, dass das die Rolle der Designer verändert: „Die genaue Kenntnis der Materialien und Technologien ist Voraussetzung für ein intelligentes Produktdesign, bei dem auch das Nutzungsende berücksichtigt wird.“ Bereits heute können 95 % eines Autos recycelt werden. Und sie sieht noch weitere Vorteile für die Produkte: Mit Hilfe eines modularen Aufbaus lässt sich nicht nur die Wiederverwertung am Nutzungsende sicherstellen, er ermöglicht auch Upgrades und Personalisierbarkeit – Produkteigenschaften, die derzeit immer mehr in den Vordergrund rücken. Doch gleich, wie ein Recycling im Einzelnen aussehen soll – erst einmal muss das Produkt zurück zum Hersteller oder hin zum Recycler. Rainer Grießhammer bemängelt die fehlende Rückwärtslogistik für Produkte. Selbst in der öffentlichen Beschaffung werden die entsprechenden Anforderungen bei Ausschreibungen nicht umgesetzt.

Mit dem Ansatz von Michael Braungart stellt sich die Frage nach der Rückführung der Produkte, womöglich noch nach unterschiedlich langen Nutzungsdauern, gar nicht. Denn er plädiert dafür, Verbrauchern nicht Produkte zu verkaufen, sondern Nutzen: Statt einer Waschmaschine bietet der Hersteller also eine definierte Anzahl von Waschgängen, statt eines Autos die gefahrenen Kilometer. Das würde Hersteller auch davon überzeugen, ihre Produkte zu verbessern: „Treibstoffersparnis lohnt sich für den Autohersteller viel mehr, wenn er gefahrene Kilometer statt Autos verkauft.“  Auch der Einsatz besserer Materialien lohne sich, wenn der Hersteller das Eigentum am Gerät oder der Anlage behalte.

Praktische Fragen noch offen

Doch wie lassen sich solche Produkte erfolgreich in den Markt einführen?  Haushaltsgeräte-Hersteller wie Bosch haben dazu schon Versuche unternommen;  bisher sind solche Konzepte allerdings zu teuer.

Und weitere Fragen schließen sich an: Was geschieht  im Fall einer Insolvenz des Unternehmens? Und wie können die Kunden davon überzeugt werden, ihr Geld für Nutzung statt für Produkte auszugeben? Eine „Erziehung der Kunden“ sieht Michael Braungart nicht als notwendig an; er ist überzeugt, dass die Intelligenz des Modells in den Produkten liegt. Eric Bischof ist da skeptischer: „Ein Dienstleistungsmodell kann zu Innovationen führen, muss aber nicht.“ Für Bischof und auch für Anne Farken sind Zukunftsmodelle wie Cradle-to-cradle oder die Circular Economy deshalb eher gedankliche Modelle als eine Lösung für alles. Auch Rainer Grießhammer warnt: „Die Welt ist zu komplex, um sie mit einem einzigen Designprinzip zu ändern.“ Andererseits gebe es Beispiel wie die Energiewende, deren ursprüngliche Idee unter anderem auf eine Studie des Öko-Instituts aus dem Jahr 1980 zurückgeht. Das zeige: Konzepte brauchen lange, können aber viel bewirken.

Read Full Post »

bomb-1185720_1920.jpgIm Blog des Guardian ist ein Beitrag der Firma Philips zur Circular Economy erschienen, der einige wesentliche Thesen zusammenfasst. Das ist These Nr. 7:

Rechnen Sie mit drastischen Veränderungen!

Einer der wesentlichen Faktoren für die Circular Economy werden disruptive Innovationen sein – dabei befeuern Durchbrüche bei Technik und Design neue Kreislauf-Handelsmodelle, die bestehende Märkte ablösen und neue schaffen. Unternehmen, die hier die Nase vorn haben, berücksichtigen, dass sie entweder ihre eigenen Geschäftsmodelle von innen aufbrechen müssen, oder sie riskieren, abgelöst zu werden. Wenn Unternehmen gemeinsam neue Ideen entwickeln, stellen sich Fragen nach dem intellektuellen Eigentum, Veröffentlichungen und Wettbewerbsrecht. Der Vorteil, Vorreiter zu sein, kann teuer werden, und die angenommenen Risiken können sich als Stolpersteine erweisen.

Courtesy of Guardian News & Media Ltd – zum vollständigen Beitrag10 things you need to know about the circular economy

Read Full Post »

« Newer Posts - Older Posts »