Feeds:
Beiträge
Kommentare

Archive for the ‘Verfahrenstechnik’ Category

Können sich Anlagenplaner und Betreiber dank Digitalisierung bald gemütlich zurücklehnen und der Steuerung im digitalen Zwilling die Arbeit überlassen? Nein, denn es bleibt noch viel zu tun. Das zeigt unter anderem der Zwischenstand des Projektes ENPRO. Mit dem Betreuer Linus Schulz haben wir über neue Erkenntnisse und den Ausblick auf Phase 2 gesprochen.

dechema_2016_004DECHEMA: Die erste Projektphase ist beendet, die zweite Phase hat begonnen. Wenn Sie jetzt eine Zwischenbilanz ziehen müssten, was hat Sie am meisten überrascht?

Linus Schulz, ENPRO-Projekt: Aus einer naiven Sicht hat es mich überrascht, wie schwierig das Zusammenspiel von automatisierten Komponenten ist. Auch die unterschiedlichen Moduldefinitionen, das war überraschend, wie schwierig das ist. Wir haben das Projekt „Modularisierung“; da kam, auch erstaunlich für die ganzen Projektbeteiligten, die Frage auf „Wie definiere ich eigentlich ein Modul?“.

DECHEMA: Welche Konsequenzen hatte das für die Diskussionen im Projekt?

Schulz: Wir haben ganz lange über diese Frage diskutieren müssen, weil die einzelnen Charaktere in der Thematik das jeweils anders gesehen haben. Ein Großanlagenbauer sieht das anders als ein Apparatehersteller. Für viele Firmen ist es ein Modul, wenn die sagen, wir setzen etwas in einen 20-Fuß-Container. Das ist aber ein völlig individualisierter 20-Fuß-Container. Für jemanden, der sich mit Automatisierung beschäftigt, ist das eine individualisierte Kleinanlage.

DECHEMA: Wie weit ist denn die Standardisierung in dem Bereich gekommen?

Schulz: Bei der Automatisierungstechnik sind die ersten Weißdrucke an VDI-Richtlinien raus, bei den verfahrenstechnischen Schnittstellen und Auslegungen soll Ende des Jahres der erste Gründruck herauskommen. Wir befinden uns derzeit aktiv in der Standardisierung. Beim MTP, also beim Modul Type Package im NAMUR-Projekt, gibt es eine erste standardisierte Beschreibung eines Moduls. Das ist noch nicht in der Anwendung, aber die ersten Firmen bauen es mittlerweile in ihre Software ein.

 

brunch.png

Mehr zu ENPRO und zur Digitalisierung in der Anlagen- und Prozesstechnik erfahren Sie beim Jahrestreffen – melden Sie sich jetzt an unter www.dechema.de/paat2018

 

 

DECHEMA: Gibt es in der zweiten Phase des Projekts, die jetzt läuft, etwas, bei dem Sie sagen, das finde ich besonders spannend?

Schulz: Da bin ich beim Projekt ORCA. Was ich da das Spannende finde ist, dass sie mit dem Regierungspräsidium in Darmstadt zusammenarbeiten, um die Genehmigung von modularen Anlagen zu besprechen. und auch schon zu einem sehr frühen Zeitpunkt die Genehmigungsverfahren vielleicht anzupassen. Also, dass nicht nur reine Projektarbeit getan wird, sondern dass da schon während der Projektlaufzeit auch die Regularien angeschaut und eventuell auch Lösungsvorschläge erarbeitet werden. Das ist etwas, was ich so aus ganz wenigen Forschungsprojekten kenne. Also hier ist es so, dass erkannt wurde, dass eine der großen Herausforderungen sein wird, eine modulare Anlage nicht nur technisch zu lösen, sondern auch von den Regularien her. Weil wenn die Regularien nicht stimmen, muss ich eine modulare Anlage, wenn ich sie wieder umbaue, wieder komplett neu genehmigen lassen.

DECHEMA: Wie geht es weiter bei ENPRO? Warum lohnt sich das Mitmachen?

Schulz: Wir haben Projekte, die noch nicht genehmigt, aber in der Vorbereitung sind. Da geht es zum Beispiel um Logistik, um Auswahlverfahren für Module und Apparate, um eine weitere und  bessere Datenintegration. Also es ist ein ganz großer Blumenstrauß an verschiedenen Themen, die aber alle die Idee der Prozessbeschleunigung und Energieeffizienz in sich tragen. Und es lohnt sich mitzumachen, weil die Einzelprojekte eine relativ große Freiheit haben, wie sie ihre Forschung selbst organisieren und gleichzeitig  den Mehrwert eines sehr intensiven Austauschs mit Gleichgesinnten bieten.

Sie fanden diese Nachricht spannend? Mehr aktuelle Neuigkeiten aus Chemie und Chemischer Technik oder unseren anderen Themenbereichen erhalten Sie wöchentlich im aktuellen Newsletter – abonnieren Sie ihn jetzt kostenlos und unverbindlich!

Advertisements

Read Full Post »

In der Regel werden bei Elektrolysen Flüssigkeiten wie Wasser oder in Flüssigkeiten gelöste Ionen, z.B. zu Metallen oder Chlor, umgesetzt. Was aber, wenn ein Gas elektrolytisch gespalten werden soll? Dieser Herausforderung stellen sich Wissenschaftler von Siemens im Forschungsprojekt „Rheticus“. Dabei soll mit Hilfe von Strom aus regenerativen Quellen Kohlendioxid zu Kohlenmonoxid umgesetzt werden. Bei der Entwicklung kam den Forschern der Zufall zu Hilfe, erzählt Günter Schmid, Principal Key Expert Research Scientist bei Siemens: „Kollegen von Covestro und ich habe vor einiger Zeit entdeckt, dass Sauerstoffverzehr-Kathoden aus der Chloralkalielektrolyse auch in der Lage sind, CO2 zu reduzieren. Natürlich ist einiges an Nachentwicklung notwendig, aber wir konnten in einer gemeinsamen Veröffentlichung von Evonik, Covestro und Siemens bereits eine Lebensdauer von 1200 Stunden nachweisen.“ Im Kopernikus-Satellitenprojekt Rheticus arbeiten die Unternehmen jetzt daran, diese Elektrolyse in den industriellen Maßstab zu bringen. Das gebildete CO dient dann als Grundlage für einen fermentativen Prozess, in dem Butanol und Hexanol erzeugt werden.

Der kontinuierliche Betrieb sei am Anfang die größere Herausforderung gewesen, erzählt Schmid: Die Elektrolysezelle basiert auf zwei Kreisläufen: Auf der Anodenseite wird Wasser oxidiert. An der Kathode wird CO2 zu CO reduziert. Eine der Herausforderungen: Die Löslichkeit von CO2 in Wasser. „In einer Limoflasche sind maximal 2 g CO2 pro Liter gelöst. Das ist nicht viel, Stromdichten von mehreren 100 mA pro cm² kann man damit nicht erreichen“, erklärt Schmid. „Deshalb setzt man die sogenannte Gasdiffusionselektrode ein.“ Deren Kern bildet ein Metall- oder Kunststoffgitter, in das ein Katalysator eingepresst wird. Dabei muss die Porengröße so bemessen sein, dass der Elektrolyt nicht hindurchläuft, aber Gas eindringen kann. Dass das CO2 den Wettbewerb um Elektronen gegen das umgebende Wasser gewinnt, obwohl an der Elektrodengrenzfläche die Relation 2 Gramm CO2 pro kg Wasser beträgt, liegt an der hohen Überspannung des Silbers gegenüber Wasserstoff – stimmt hier ein Parameter nicht, entsteht anstelle des CO vor allem Wasserstoff. „Wie man diese Faraday-Effizienz richtig „tuned“, haben wir im Projekt gelernt“, sagt Günter Schmid. Bei Design und Optimierung solcher Gasdiffusionselektroden sind zahlreiche Faktoren zu beachten – Leitfähigkeit, Morphologie, chemische Zusammensetzung, Porosität und Durchdringdruck, bei dem das Gas eindringt, aber nicht „durchblubbert“. Und natürlich spielen sie auch beim Scale-up eine entscheidende Rolle.

PF Electrolysis AnzeigeUm den Stromkreis zu schließen und einen kontinuierlichen Betrieb zu gewährleisten, müssen Ladungsträger zwischen Wasser und CO2 hin und her bewegt werden. „Im einfachsten Fall sollten die Protonen, die an der Anode entstehen, das Hydroxid an der Kathode neutralisierten und so hätten wir unseren Stromkreis geschlossen“, erklärt Schmid. Der Teufel liegt im Detail, denn je nachdem, welche der vorhandenen Ionen für den Ladungsausgleich sorgen, kommt es zu unerwünschten Nebenreaktionen. Über die Konzentration des Elektrolyten und die Auswahl der Membran lässt sich zwar steuern, welche Ionen zwischen den Zellen wandern. Aber die Ionen nehmen beim Durchtreten der Membran immer auch Wassermoleküle mit, und damit kommt es im Laufe des Betriebs zu Verdünnungs- und Konzentrationseffekten in den Teilzellen. Deshalb haben die Forscher ein System entwickelt, bei dem in einem externen Mischgefäß für einen Ausgleich gesorgt wird. Zudem wurde die Anode direkt auf die Membran aufgebracht, um mit einer „Zero-Gap-Anordnung“ möglichst wenig Elektrolytwiderstand zu erreichen. „Wenn das ausbalanciert ist, läuft es – auch nach 1250 Stunden war die Versuchsanordnung stabil“, erklärt Schmid.

Da es sich bei der Elektrolyse um eine Flächentechnologie handelt, steht dann als nächster Schritt für die Skalierung ins Volumen die Verschaltung mehrerer Zellen zu einem Stack an. Durch das Hintereinanderschalten der Einzelzellen mit 3-5 Volt Betriebsspannung wird der Elektrolyseur auch kompatibel zu den deutlich höheren Spannungen, die das Netz bereitstellt.

Im Rahmen des Projektes ist es gelungen, ohne Akkumulation von Nebenprodukten Stromdichten von 300 mA/cm² zu erreichen. „Damit hatten wir eine Schwelle überschritten, wo man sich sagt: Wir sollten weitermachen“, sagt Schmid. Aktuell geht es nun darum, die Plattengrößen auf 300 cm² zu erhöhen; der Wunsch der Wissenschaftler wäre eine 3 m²-Elektrode wie in der Chloralkalielektrolyse, in der allerdings 120 Jahre Entwicklung stecken. Doch Günter Schmid ist optimistisch; im Dezember 2019 soll die erste Anlage in den Testbetrieb gehen und aus erneuerbarer Energie Chemikalien erzeugen.

Wenn Sie mehr über neue Technologien und Anwendungen für Elektrolyse hören wollen, registrieren Sie sich jetzt für das PRAXISforum „Electrolysis in Industry“ am 22. und 23. November 2018 in Frankfurt.

Read Full Post »

Durch die Energiewende und den steigenden Anteil an erneuerbaren Energien mit volatiler Verfügbarkeit gewinnt die Kopplung von Energie- zu Chemiesektor neuen Schwung – und die Elektrolyse an Bedeutung. Denn die Elektrolyse ist der Schlüssel bei vielen hochaktuellen Prozessen und die entscheidende Schnittstelle zwischen Strom- und Chemiesektor.

Unter dem Stichwort „Sektorkopplung“ geht es dabei darum, Strom für die Herstellung von Kraftstoffen oder Chemikalien zu nutzen. In fast allen Verfahren spielt die Elektrolyse eine Schlüsselrolle. Dabei bildet die Wasserelektrolyse einen Schwerpunkt. Der durch die Aufspaltung von Wasser gewonnene Wasserstoff kann entweder als Energieträger beispielsweise für Brennstoffzellen eingesetzt oder in die Produktion von Chemikalien eingespeist werden. Dementsprechend vielfältig ist die Zahl der Projekte: Fast täglich wird über neue Bauvorhaben berichtet, von der lokalen Wasserstoff-KWK-Anlage bis zu Megaprojekten wie die geplanten 10- und 20-MW-Projekte, die AkzoNobel bzw. Shell Anfang 2018 angekündigt haben. Gleichzeitig schreitet die Entwicklung der Elektrolysezellen voran: Neue Elektrodenmaterialien oder Entwicklungen wie die PEM-Elektrolysezellen sorgen dafür, dass die Verfahren immer effizienter und je nach weiterer Nutzung des Wasserstoffs auch wirtschaftlich wettbewerbsfähig werden. In einem Bericht von April 2018 an das BMWi weisen Wuppertal Institut und Fraunhofer ISI jedoch darauf hin, dass die verfügbaren Elektrolyseure keine Serienprodukte sind und ein notwendiger Scale-Up schnell erfolgen muss. Daraus ergäben sich auch Chancen für den Exportmarkt.

PF Electrolysis Anzeige

Und längst richtet sich das Augenmerk nicht mehr nur auf die Wasserstoffproduktion. Auch die Co-Elektrolyse von Wasser und Kohlendioxid zu Synthesegas wird derzeit genauer untersucht. Im Forschungsprojekt Rhetikus streben Siemens und Evonik ein Verfahren zur Umwandlung von Kohlendioxid zu Butanol und Hexanol mit Hilfe von regenerativem Strom und Mikroorganismen an. Siemens liefert die Elektrolysetechnik und entwickelt dabei den ersten Gas-Gas-Elektrolyseur im industriellen Maßstab.

Auch, wenn dabei die Erzeugung werthaltiger Chemikalien im Mittelpunkt steht, bringt das Verfahren noch einen zweiten Aspekt mit, der es für die Kopplung an erneuerbare Energieträger besonders interessant macht: Es lässt sich innerhalb eines gewissen Rahmens hoch- und runterregeln und könnte damit je nach Stromangebot mehr oder weniger Energie pro Zeiteinheit nutzen.

Das gilt nur in sehr geringem Umfang für den Klassiker unter den Elektrolyseverfahren, die Chlor-Alkali-Elektrolyse. Denn das gebildete Chlor ist der Ausgangspunkt für viele weitere Chemikalien, und die Produktionsmengen können nicht ohne weiteres heruntergefahren werden. Doch selbst in diesem vermeintlich lang ausgereiften Prozess verbergen sich noch Innovationspotenziale: So konnte durch den Einsatz von Sauerstoffverzehrkathoden der Energieverbrauch bei Covestro für die Chlorherstellung um bis zu 30 % gesenkt werden.

Welche Anwendungen in der Elektrolyse aktuell auf der Tagesordnung stehen und wie sich ihre Potenziale noch besser nutzen lassen, diskutieren Anwender und Anbieter beim PRAXISforum Electrolysis in Industry am 22. und 23. November 2018 im DECHEMA-Haus, Frankfurt. Die Anmeldung für Aussteller und Teilnehmer ist geöffnet; mehr unter http://www.dechema.de/Electrolysis

 

 

Read Full Post »

thumbnailWie muss die Prozessindustrie auf die Digitalisierung reagieren, damit sich auch in 20, 50 oder 100 Jahren noch eine Rolle spielt? Dieser Frage widmeten sich etwa 100 Experten und Entscheider aus der Chemie- und Prozessindustrie beim 57. Tutzing-Symposion „100% digital: Überlebensstrategien für die Prozessindustrie“. Organisiert wurde die Veranstaltung vom DECHEMA e.V. und der ProcessNet-Fachgemeinschaft Prozess-, Apparate-, und Anlagentechnik PAAT unter Federführung der Vorsitzenden Prof. Dr.-Ing. Norbert Kockmann, TU Dortmund, und Dr. Hans-Rolf Lausch, Evonik.

Die wegweisende Veranstaltung bestand aus zahlreichen Impulsvorträgen von Experten und Entscheidern der Prozessindustrie sowie Kreativ-Workshops an zwei Nachmittagen.

Die Ergebnisse der Workshops und intensiven Diskussionen wurden in 36 Tutzing-Thesen zusammengefasst.

Mehr erfahren und mitdiskutieren – hier im Blog oder beim Jahrestreffen der ProcessNet-Fachgemeinschaft „Prozess-, Apparate- und Anlagentechnik“ am 12. und 13. November 2018 in Köln – jetzt anmelden

Workshop 1: Horizontal, Supply Chain vom Rohstoff bis zum Kunden

  1. Die horizontale Integration der Wertschöpfungskette (auch firmenintern) birgt enorme Potentiale für alle Beteiligten
  2. Es gibt einen Bedarf an digitalen Plattformlösungen incl. Planungstools für mittelständische Unternehmen ohne 1:1 Datenintegration zwischen Lieferant-Hersteller-Kunde
  3. Herausforderungen der horizontalen Integration bestehen eher bei Vertrauen und Zusammenarbeit als bei der technischen Umsetzung
  4. die horizontale und vertikale Vernetzung müssen stärker verbunden und integriert werden

Workshop 2: Vertikal, R&D, Planung, Produktion

  1. Der Digital Twin ist das Fundament der Digitalisierung in der Prozessindustrie
  2. Das volle Potential der Digitalisierung kann in der Prozessindustrie erst durch Künstliche Intelligenz gehoben werden
  3. Digitalisierung ermöglicht ein Mehr an Innovation (neuartige Produkte, Prozesse, Wertschöpfungsketten)
  4. Digitalisierung ist nicht im Alleingang möglich, sie muss gemeinsam gestaltet werden
  5. Digitalisierung im Asset Life Cycle (ALC) macht nur Sinn, wenn der Digital Twin gefüllt und immer aktuell ist (Akzeptanz)
  6. Digital Twin zwingt zur Zusammenarbeit
    • Entwicklung ist nur gemeinsam möglich
    • Wenn der Digital twin existiert, wird die interdisziplinäre Zusammenarbeit intensiviert
  7. Der Digital Twin wird Time to Market deutlich reduzieren, die Flexibilität erhöhen und Kosten senken
  8. Der Digital Twin schafft Zeit und Potential für mehr Kreativität, kann aber durch Bedrohung von Tätigkeiten und Arbeitsplätzen kritisch gesehen werde
    • Der Digital Twin vermeidet Doppelarbeit/ reduziert Fehler
  9. Digitalisierung / Digital Twin fördert Zusammenarbeiten:
    • Im Unternehmen / Unternehmensübergreifend / zu Lieferanten
  10.  Der Verlust des Digital Twins ist der Gau
    • Know how Verlust / Spannungsfeld Zugriffsrechte und Kooperation
  11. Der Ingenieur steht im Wettbewerb / in Symbiose mit Künstlicher Intelligenz KI, allerdings darf die KI nicht über den Menschen entscheiden
  12. Der Grad der Autonomie (der KI) wird von der Bereitschaft der Gesellschaft bestimmt
  13. KI unterstützt Interdiziplinarität, die früher im ALC eine Rolle spielen wird

Tutzing Video

Zum Video zum Tutzing-Symposium 2018: https://youtu.be/HuOkiwjIl4U

Workshop 3: Intelligente Apparate: Das 100% Modul

  1. ist der Building Block für ein Smart Manufacturing-Eco-System
  2. erschließt weitere Potenziale bei Verfügbarkeit, Produktivität und Flexibilität
  3. erfordert Co-Kreation über Unternehmens- & Disziplingrenzen hinweg
  4. stellt neue juristische, technische und organisatorische Fragen
  5. verändert Ausbildung an Hochschulen von selektiver Funktions- zu ganzheitlicher Prozess-Sicht

Workshop 4: Datenkonzepte und autonome Anlage

  1. Durch konsequente Nutzung von Datenkonzepten, Datenanalyse, Big Data und KI ergibt sich ein entscheidender Wettbewerbsvorteil in der Prozessindustrie
  2. Gemeinsame Wettbewerbsfähigkeit der Prozessindustrie und ihrer Zulieferer durch Nutzung von Bausteinen der Digitalisierung (Big Data und KI) ausbauen
  3. Schulterschluss von Anwendern und Lieferanten zur intelligenten Nutzung von Daten zum Meistern der gesellschaftlichen und wirtschaftlichen Herausforderungen
  4. Fairer Umgang beim Austausch von Daten und Erfahrungen zwischen Prozessindustrie und ihren Zulieferern durch offene, standardisierte, herstellerunabhängige Schnittstellen

Workshop 5: Arbeitswelt 4.0

  1. Die Digitalisierung ist der Change Prozess der Arbeitswelt der 20iger Jahre
  2. Die Digitalisierung wird die Organisation der Arbeit verändern hin zu einer Gesamtbetrachtungsweise.
  3. Anzahl der Arbeitsplätze in der Produktion wird sinken während die der Stakeholder steigen werden.
  4. Der Anspruch an die Qualifikation der Mitarbeiter ändert sich zu größeren Extremen (niedrig/hoch)
  5. Digitalisierung erfordert eine verstärkte Interaktions- und Kommunikationsfähigkeit und die Bedeutung der Kommunikation über verschiedene Kanäle wird zunehmen
  6. Die Zuordnung der Verantwortung und der sichere Betrieb von Anlagen ist zu gewährleisten

Workshop 6: Aus- und Fortbildung

  1. Ein fundiertes Grundlagenwissen ist auch in Zeiten der Digitalisierung unabdingbare Voraussetzung und muss zeitgemäß vermittelt werden
  2. Die Digitalisierung erfordert eine häufigere Überprüfung und angemessene Überarbeitung der Curricula
  3. Wir sehen eine gesamtgesellschaftliche Verpflichtung zur Qualifizierung von Arbeitnehmern und zur Schaffung einer bedarfsgerechteren Bildungsinfrastruktur
  4. Die Bedeutung von lebenslangem Lernen nimmt durch Digitalisierung zu. Universitäten & Hochschulen sollten als Think Tanks der Zukunft Fortbildungs-Angebote für Wirtschaft und Verwaltung entwickeln

Die Thesen dienen als Ausgangspunkt für weitere Diskussionen – seien Sie dabei und geben Sie Ihren Input!

Read Full Post »

Vorfreude

Abendvortrag

Eröffnungsveranstaltung

Preise und Ehrungen

Ausstellung

Vorträge

Berichterstattung

Und drumherum…

Und jetzt? Nicht verpassen – Call for Paper für die Jahrestreffen der ProcessNet-Fachgruppen im Frühjahr 2019!
Alle weiteren Treffpunkte für Verfahrenstechniker und Biotechnologen immer aktuell im Veranstaltungskalender – wann sehen wir uns?

Read Full Post »

Die Jahrestagungen: Über 150 Stunden Vortragsprogramm

Über 300 Vorträge in bis zu 12 Parallelsessions – vom Bioprozesstechniker bis zum Anlagenplaner, vom Fluiddynamiker bis zum Energieexperten – jeder findet bei den Jahrestagungen ein spannendes Programm. Damit Sie den Überblick nicht verlieren, finden Sie unseren Programmplaner online  . Und die Anmeldung ist auch weiterhin geöffnet – registrieren Sie sich hier.

3d European Conference on Natural Products, 02.-02.09.2018, Frankfurt

Mehr als 200 Teilnehmer haben sich für die European Conference on Natural Products schon registriert.

NanoTox 2018 – International Conference on Nanotoxicology, 18.-21.09.2018, Neuss

Der Fokus der diesjährigen NanoTox liegt auf neuen Werkzeugen für die Risikobewertung von Nanomaterialien.

BIOFLAVOUR, 18.-21.09.2018, Frankfurt

Die BIOFLAVOUR verspricht einmal mehr, der diesjährige Höhepunkt für alle zu werden, die sich mit Aromen, Duftstoffen und funktionalen Inhaltsstoffen beschäftigen.

EFC-Workshop 2018: High Temperature Corrosion under Deposits, Salts and in Complex Gases: Towards Greener Energy, 26.-28.09.2018, Frankfurt

Die Energiewende und besonders die Gewinnung von Energie aus Biomasse bringen neue Herausforderungen für Hochtemperaturwerkstoffe mit sich, die in diesem Workshop diskutiert werden.

Thermodynamik-Kolloqium, 26.-28.09.2018, Kassel

Ob Energieverfahrenstechnik, Modellierung chemischer Prozesse oder Vorgänge an Grenzflächen – hier kommen alle Themen der Thermodynamik zur Sprache.

Bundesalgenstammtisch, 27.-28.09.2018, Karlsruhe

Mikroalgen sind vielseitig nutzbare Organismen – und eine mögliche Kopplung an Biogasanlagen eröffnet ganz neue Perspektiven auch für ländliche Räume. Was sonst noch alles möglich scheint oder heute schon ist, erfahren Sie beim Bundesalgenstammtisch.

Smart Sensors – mechanistic and data driven modelling, 01.-02.10.2018, Frankfurt

Längst leisten Sensoren weit mehr als “nur” Messwerte liefern – smarte Sensoren übernehmen Aufgaben der Datenverarbeitung, „soft sensors“ ahmen Erfahrungswissen menschlicher Anlagenführer nach. Wohin die Entwicklung geht, erfahren Sie bei der Tagung aus erster Hand.

 

Read Full Post »

hand-3308188_1280Wie werden Sie in 10 Jahren arbeiten? Noch schneller, noch länger, noch öfter von unterwegs? Oder werden Roboter quasi auf Zuruf einen großen Teil dessen übernehmen, was Sie heute als lästige Notwendigkeit Ihrer Arbeitszeit wahrnehmen? Oder – auch das ist schließlich denkbar – sagen die Roboter Ihnen, was Sie als nächstes zu tun haben, geben Ihnen den Arbeitsrhythmus vor und sorgen dafür, dass Sie Ihre Zeit nicht vertrödeln?

Denkbar sind beide Szenarien allemal. Eine Studie von 2013 hat viele aufgeschreckt, die bisher davon ausgegangen waren, dass ihr Arbeitsplatz sicher sei: Danach könnten in Großbritannien 47 % der Jobs der Digitalisierung zum Opfer fallen – und betroffen sind nicht nur einfache Tätigkeiten, sondern auch Aufgaben, die heute von sehr gut ausgebildeten Facharbeitern oder sogar Universitätsabsolventen ausgefüllt werden. Wer testen will, wie groß das Risiko ist, dass zukünftig ein Roboter am eigenen Schreibtisch Platz nimmt, findet bei der BBC Antworten . Demnach ist das Risiko für den „Chemical Scientist“ mit nur 6% zwar überschaubar, aber der Chemiefacharbeiter wird mit einer Wahrscheinlichkeit von 85 % wegrationalisiert werden.

Dabei sind die Hoffnungen, die mit der Digitalisierung verknüpft sind, durchaus groß. Wer hat nicht im Labor geflucht, wenn er die Tausendste Probe pipettiert oder endlose Stunden damit zugebracht hat, Zellkulturen zu sichten? Wer hätte nicht lieber vorausgewertete und grafisch aufbereitete Daten, anstatt sich mit riesigen Tabellen voller Messwerte und Standardabweichungen herumzuschlagen? Keine Frage, auch Biotechnologen, Chemiker und Verfahrensingenieure würden viele dieser Aufgaben lieber heute als morgen Siri oder Alexa überlassen.

Ein Besuch bei Morphosys in München zeigt, wie weit diese Entwicklung schon heute gediehen ist. Das Pipettieren, Picken und Aufbereiten übernehmen hier Hochdurchsatzmaschinen. Das Laborpersonal stellt die reibungslosen Abläufe sicher, überwacht die Roboter – und es bringt den kreativen Touch hinein: Denn wenn es darum geht, einen einmal gefundenen Antikörper zu optimieren, geht derzeit noch keine Künstliche Intelligenz über das Erfahrungswissen eines menschlichen Wissenschaftlers.

Und auch für die weltweite Zusammenarbeit macht man sich die Digitalisierung gerne zunutze. Große Konzerne haben längst Teile ihrer Forschung und Entwicklung an andere Standorte verlagert. Wo die kritische Masse an klugen Köpfen vor Ort nicht mehr erreicht wird, lässt sie sich durch Vernetzung wieder herstellen. Daten können gemeinsam bearbeitet werden, und dank Augmented Reality kann der Ingenieur in Pullach die Anlage in China besichtigen, ohne um die halbe Welt fliegen zu müssen.

Im jüngsten DECHEMA-Papier „Neuer Schub für die Biotechnologie“ skizzieren die Autoren, wohin die Kombination aus Automatisierung, Miniaturisierung und Digitalisierung führen kann. Dank der Kombination aus Hochdurchsatztechnologien, der enormen Beschleunigung beim Generieren von Daten und der Möglichkeit, diese mit Hilfe von Big Data und Künstlicher Intelligenz auszuwerten, kann der Wissenschaftler sich ganz darauf konzentrieren, seine Ideen zu verwirklichen – vom designten Molekül bis zum großindustriellen Produktionsprozess.

teens-629046_1280Doch wer einen Blick in die heutige Arbeitswelt wirft, den mag auch ein leichter Schauder ankommen angesichts der Vorstellung, dass Kollege Computer bald den Takt vorgibt. Schon heute fühlt mancher sich bei allen Vorteilen, die die neuen Kommunikationswege ermöglichen, als Sklave seines E-Mail-Kontos. Von der autonomen Zeitgestaltung bis zur Selbstausbeutung ist es häufig nur ein kleiner Schritt. Und die enorme Beschleunigung der Arbeitsprozesse führt statt zu mehr Raum für kreative Ideen und konzeptionelles Arbeiten eher zum Gegenteil: Hektisches Hinterherrennen hinter Routineaufgaben wird dann zum Standard und der Stapel unerledigter Mails wächst von Woche zu Woche. Gerade die „Digital Natives“, auf die feste Arbeitszeiten und ein stationärer Schreibtisch häufig wirken wie aus Großvaters Erinnerungsalbum, werden Wege finden müssen, mit diesen neuen Anforderungen umzugehen, ohne sich darin zu verlieren. Und bei allem Vertrauen in die Technik werden auch sie ein handwerkliches Grundverständnis brauchen, damit die Anlage nicht zur „Black Box“ für ihren Betreiber wird. Das richtige Maß zwischen Kompetenzvermittlung und praktischer Übung zu finden, ist für die Hochschulen und Personalabteilungen sicher eine der größten Herausforderungen für die nächsten Jahre und Jahrzehnte.

Was die Digitalisierung noch bedeutet für Wissenschaft und Produktion, für Verfahrenstechniker, Biotechnologen und Chemiker, darum geht es in der Podiumsdiskussion „Forschung und Produktion in einer globalen Welt“ am 12. September 2018 im Rahmen der ProcessNet-Jahrestagung und DECHEMA-Jahrestagung der Biotechnologen.  Wie sehen Sie die Zukunft Ihrer Branche? Teilen Sie uns Ihre Meinung mit! Wir freuen uns auf Ihren Beitrag!

Read Full Post »

Older Posts »