Feeds:
Beiträge
Kommentare

Archive for the ‘Energie & Klima’ Category

Wer Energie spart, spart auch CO2 und Kosten. Das liegt auf der Hand. Kompliziert wird es aber bei der Umsetzung, denn hier spielen viele Faktoren eine Rolle. Für industrielle Wasserkreisläufe gibt es jetzt eine Plattform, die Unternehmen auf dem Weg zu mehr Energieeffizienz unterstützt. An ihrer Entwicklung war auch die DECHEMA im EU-Projekt WaterWatt beteiligt. Im Interview erklärt Dr. Jochen Michels, wissenschaftlicher Koordinator des Projekts, wie die Plattform eingesetzt werden kann und welche Einsparungen möglich sind.

Was ist die E3-Plattform?

E3 steht für Energie, Effizienz, Evaluation. Auf dieser internetbasierten Plattform kann man sich über Energieeffizienz in industriellen Wasserkreisläufen informieren und seine eigenen Kreisläufe evaluieren. Man kann also einmal durchprüfen, wie energieeffizient sie im Vergleich zu Wasserkreisläufen, die wir als Beispiele hinterlegt haben, schon sind. Man kann Verbesserungsvorschläge nachlesen oder im Simulator durchtesten.

Startseite der E3-Plattform

An wen richtet sich die E3-Plattform?

Wir gingen erst davon aus, dass sie sich direkt an die Unternehmen richtet, an große Unternehmen, die industrielle Wasserkreisläufe einer bestimmten Dimension betreiben. Das sind in der Regel Großindustrien, die auch eigene Energieteams haben, die sich um die Energieeffizienz in den Anlagen kümmern. Das ist aber nur eine relativ kleine Gruppe, die aber auch durchaus interessiert ist. Allerdings muss man sagen, dass die alle schon Lösungen haben, weil sie vom Gesetz her verpflichtet sind, sich alle drei Jahre in Bezug auf Energieeffizienz evaluieren zu lassen. Das ist eine gesetzliche Vorgabe der EU.

Deswegen muss man sagen, dass wir uns mit diesem WaterWatt-Projekt eher an kleine und mittelständische Unternehmen wenden, die zwar nicht gesetzlich verpflichtet sind, Energieeffizienzmaßnahmen zu ergreifen, aber wo die EU es sehr unterstützt, wenn sie es tun. Es lohnt sich für diese Unternehmen auch erst, wenn sie eine bestimmte Mitarbeitergröße haben, weil Energieeffizienzevaluation immer auch bedeutet, dass mindestens ein Mitarbeiter, wenn nicht gar ein Team, für diese Aufgabe zuständig sein muss.

Interessant ist die Plattform auch für Berater. Die waren, wenn wir das Projekt vorgestellt haben, immer sehr interessiert, weil sie die Plattform nutzen können, um ihren Kunden Energieeffizienzmaßnahmen zu erklären. Ein Consultant kann sich mit diesem doch recht komplizierten Simulator auseinandersetzen, kann die Kreisläufe dort abbilden und seinen Kunden gleich zeigen, wie viel Energie im Jahr gespart werden kann, wenn er Pumpe X und Filter Y durch etwas anderes ersetzt. Solche Tools gibt es eigentlich nicht auf dem freien Markt oder zumindest nicht kostenlos und sie sind auch relativ kompliziert. D.h. es lohnt sich eigentlich weniger für Unternehmen, sich einmalig dort einzuarbeiten, aber es lohnt sich für einen Berater, der viele Kunden hat, bei denen er das Tool regelmäßig einsetzen kann.

Wie kann die Plattform eingesetzt werden? Welche Vorteile hat sie?

Die Situation vor drei Jahren, als wir mit dem Projekt angefangen haben, war, dass es eigentlich gar kein Bewusstsein für diese Nebenkreisläufe in der Industrie gab. Für ein Unternehmen ist wichtig, dass der Prozess läuft. Und der Prozess an sich, was auch immer produziert wird, muss energieeffizient sein. Das ist schon richtig. Aber in der Regel hängt bei vielen Unternehmen der Prozess auch daran, dass der industrielle Wasserkreislauf funktioniert. Nehmen wir als Beispiel ein Walzwerk, das Walzstahl herstellt. Die Maschinen, die den Stahl walzen, werden permanent mit Wasser gekühlt, damit sie durch den geschmolzenen Stahl nicht selber angegriffen werden. Wenn da die Kühlung ausfällt, steht der ganze Prozess still. Und deswegen ist es ihnen eher egal, wie viel Wasser sie dort verbrauchen, Hauptsache die Kühlung funktioniert. Ein Stahlwerk braucht natürlich viel mehr Energie, um den Stahl aufzuschmelzen. Da muss also auch ein Umdenken stattfinden, weil es auch hier in der Summe um sehr viel Energie geht und damit auch sehr viel CO2, das bei der Energieproduktion anfällt. Man geht davon aus, dass es um die 10.000 Gigawattstunden für die gesamte EU sind, die eingespart werden können.

Abhängig von den kontextabhängigen Faktoren werden natürlich nicht alle Unternehmen die Maßnahmen umsetzen. Eine Checkliste mit den kontextabhängigen Faktoren, die Unternehmen bei der Berechnung berücksichtigen sollten, findet sich im Informationsteil der Plattform. Dort gibt es auch E-Learning-Module und weitere Infos. Jeder muss für sich selbst bestimmen, welche Faktoren auf die eigene Situation zutreffen. Es reicht z.B. nicht zu sagen, dass man eine neue Pumpe kauft. Man muss schauen, ob man nicht Fördergelder dafür bekommen kann. Muss ich meine Mitarbeiter für diese neue Pumpe schulen, habe ich Mehrkosten. So geht es rauf und runter und das muss man alles berücksichtigen, wenn man so eine Investitionsentscheidung trifft. Für die Entscheidung reicht es nicht zu sagen, dass eine neue Pumpe so und so viel Wasser und Energie spart. Auch die Frage nach der maximal tragbaren Amortisationszeit, die für jedes Unternehmen unterschiedlich ist, spielt eine Rolle. So etwas kann der Unternehmer nur selber entscheiden. Dafür geben wir dem Unternehmen oder Berater die Tools an die Hand. Wir bieten eine riesige Datenbank auf der Website die von vielen Anbietern Pumpen, Filter und Kühltürme sowie andere Teile enthält, die in einem industriellen Wasserkreislauf verwendet werden. Deren Kenndaten, die für die Energieeffizienz sprechen, haben wir auf einen gemeinsamen Nenner gebracht, so dass wir in einer großen Tabelle darstellen können, wie energieeffizient bestimmte Komponenten sind, so dass man sie auch untereinander vergleichen kann.

Neben den Infos bieten wir auf der Plattform im Moment zwei Möglichkeiten zur Evaluierung an: Das eine ist die Selbstevaluierung. Man kann also die ganzen Tools, einen kurzen Fragebogen und den Simulator nutzen. Oder man füllt einen umfangreicheren Fragebogen aus, der an unsere Partner im Projekt geschickt wird, und kann dort eine kostenpflichtige Beratungsleistung anfordern. Das Projekt ist jetzt zu Ende, aber die Finanzierung für die Plattform ist in der Form noch für ein Jahr gesichert. Die Idee ist, dass zwei unserer Partner daraus ein Unternehmen gründen und mit dem Tool einerseits an Unternehmen herangehen, andererseits Berater schulen. Dieses Spin-off soll die Plattform dann weiter kostenlos anbieten. Darüber hinaus wird die geplante Firma auch kostenpflichtige Beratungen anbieten.

Konzept des Projekts WaterWatt

Wie sollte ein Unternehmen vorgehen, wenn es sein Einsparpotenzial auf der Website berechnen möchte?

Sinnvoll ist, sich erst mal mit der Website vertraut zu machen und einen Überblick über die Tools zu bekommen, z.B. mit unserer Broschüre. Wenn es dann an die Simulation geht, kann man natürlich alle Komponenten im Simulator darstellen. Dahinter verbergen sich noch jede Menge Eingabefelder mit notwendigen Daten, damit die Simulation am Ende läuft. Das ist ein iterativer Prozess. Man kann auch jeden Zwischenstand speichern, wenn z.B. noch Daten fehlen, und dann an der Stelle weitermachen. Das ist auch nützlich, wenn man einen Energieaudit durchführt und die Zwischenschritte mit dem Auditor bespricht.

Jetzt ist eine gute Zeit, sich um die Energieeffizienz zu kümmern, weil es viele Fördermittel gibt. Die EU hat eine eigene Energieeffizienz-Richtlinie herausgegeben, die aktuell zwar nur die Großunternehmen verpflichtet, Energieaudits zu machen und regelmäßig zu dokumentieren, wie sie energieeffizienter werden. Für kleine und mittelständische Unternehmen gilt das nicht. Aber es gibt sehr viele Programme, um sie auch zum Audit zu bewegen und sie dabei zu unterstützen, energieeffizienter zu werden. Je energieeffizienter ein Unternehmen, desto wirtschaftlicher. Es lohnt sich also auch für kleinere Unternehmen mal zu schauen, wo man etwas einsparen kann.


Dashboard des Simulators

Welche Einsparungen sind möglich?

Für die Marktanalyse haben wir sehr viele Berichte von ähnlich gelagerten Fällen gelesen. Da wurden schon Case Studies gemacht, die versucht haben, das Einsparpotenzial zu erfassen. Und es lag immer zwischen fünf und zehn Prozent des Energieverbrauchs des Kreislaufes eines Unternehmens.

Vielen Dank für das Gespräch, Herr Dr. Michels.


Werbeanzeigen

Read Full Post »

Interview with Michele Aresta, Initiator of ICCDU and Member of the International Committee

This year’s ICCDU is the 17th edition of the event. What were your expectations when you started this series?
ICCDU was started after two Summer Schools funded by NATO on “CO2 as Carbon Source, 1986” and “Reaction Mechanisms in Enzymatic and Model carboxylation and reduction reactions based on CO2, 1989”.  The ICCDU Series was started for being the international forum where the scientific community working on CO2 conversion could meet. And this has been ICCDU since its start.

How would you describe the first ICCDU – was this more an academic discussion, or did you already envision concrete applications?
Surprisingly, in the 1980s there were already practical applications in the field of polymers from CO2 (Al-based catalysts) which went on stream. The scientific discussions already covered other themes such as CO2 reduction, photocatalysis, synthesis of fine chemicals, polymers such as polyurethanes and polycarbonates and so on. What people do today was well known in the 1980s. The interest in CO2 chemistry was at that time boosted by the“oil crisis” (1973, 2000s).  Climate change was not yet a serious issue. The low cost of oil has decreased the interest in CO2 conversion in the 2000-2010s. Now the push comes from climate change, a completely different motivation.
The scheme below was developed in 1987: it presents the vision I had about CCU 30 years ago:


 An Integrated approach to CO2 Utilization, M. Aresta, NATO ASI Series 1989.

The routes to go were very clear to me at that time! We are running now along those paths.

How has CCU (not the conference, but the technology) evolved since the first ICCDU? What expectations were met, what not? And did unexpected develpoments occur?
As I wrote in a paper published in JCOU in 2013 “The changing paradigm in CO2 conversion”, the availability of cheap PV-H2 makes possible today the exploitation of CO2 reduction to energy products, that did not make sense in a fossil-C based energy frame as it was in the 1980s. And this is a big step towards “circular economy of C”.

What is special about ICCDU compared to other events on the topic of CCS and CCU?
ICCDU is a scientific forum and gathers scientists from usually 35+ countries. In 2015 we had over 40 countries present. It is a global conference that has since a few years opened up to policy makers and industrialists: this is a must these days.

From your personal point of view, what are you looking forward to most at this year’s ICCDU?
In future years ICCDU will be more and more inclusive and will sustain the development of new science and technology in the direction of implementing a circular C-economy by integrating CO2 conversion, biotechnologies, and biomass utilization. Integration of biotechnologies, catalysis, photocatalysis is essential for CCU. Synthetic photochemistry is a key step. Integration with nature is essential. Learning from nature is our future.

What will, from your personal point of view, be the „next big thing“ in CCU?
Direct co-processing of water and CO2 for developing an “Economy based on CO2 and water”! This is the title of my most recent book published with Springer and this is my vision since ever.
CCU is cycling Carbon. CO2 is renewable carbon: one can cycle it again and again as Nature does. This is the basis of bioeceonomy: CCU is integrated with the Bioeconomy concept. We should not make the mistake of keeping biomass utilization and CCU apart! They must be integrated.

Join ICCDU 2019 in Aachen and discuss the opportunities and applications of carbon capture and utilization with experts from research and industry from all over the world!

Read Full Post »

Kaum eine Woche vergeht ohne Nachrichten über die fortschreitende Digitalisierung der Prozessindustrie. Zentren für Big-Data-Analysen werden eingerichtet, neue Positionen geschaffen und unternehmensweite Programme ins Leben gerufen, um Digitalisierungskonzepte einzuführen, die weit über die Automatisierung der Produktion hinausreichen. Dem Verband der Chemischen Industrie zufolge plant die chemische Industrie in den nächsten Jahren Investitionen von mehr als 1 Milliarde Euro für Digitalisierungskonzepte und neue nachhaltige Geschäftsmodelle.

Die erwarteten Gewinne scheinen diese Investitionen zu rechtfertigen: „Laut einer Studie von Fraunhofer IAO und dem IT-Verband BITCOM könnte die Vernetzung von Produktentwicklung, Produktion, Logistik und Kunden der chemischen Industrie zu einem Anstieg der Wertschöpfung um 30 % bis 2025 führen. Mit anderen Worten: Wem es gelingt, seine Daten entlang der gesamten Wertschöpfungskette nutzbar zu machen, kann sich einen gewaltigen Wettbewerbsvorteil sichern“, erklärt Mirko Hardtke, Business Development Manager bei der Data Virtuality GmbH.

Keuin Wunder, dass ein enormes Interesse an der Entwicklung von Werkzeugen besteht, mit denen sich der versteckte Schatz in Big Data heben lässt. Große wie kleine Unternehmen und Startups beteiligen sich an diesem neuen Goldrausch: „Für die steigende Prozesskomplexität und den schnelle Anstieg der Datenmengen braucht man neue Technologien zum Umgang mit Daten, vor allem dort, wo Abhängigkeiten zwischen Datensilos bestehen“, sagt Sebastian Dörr, Vice President Sales bei der Conweaver GmbH. Sein Unternehmen hat eine Technologie entwickelt, die die automatische Verknüpfung von Daten aus verschiedenen Quellen ermöglicht und so kontextuales Wissen für Datenowner und -nutzer zugänglich macht. Gleichzeitig dient die Plattform als Grundlage für Big Data Analytics.

Über Methoden zu verfügen ist das eine – sie tatsächlich einzusetzen, manchmal etwas ganz anderes: „Industrieunternehmen sammeln heute mehr und mehr Daten, kontinuierlich und aus mehr Quellen als jemals vorher. Statistische Methoden können helfen, diese Daten zu nutzen. Aber sie stoßen häufig auf Zögern und Vorurteile“, sagt Martin Demel, Sr. Systems Engineer JMP bei SAS Institute.

Statistische Methoden lassen sich heute einfach, fast spielerisch einsetzen“

Martin Demel, Sr. Systems Engineer JMP, SAS Institute GmbH

„Das ist nicht nur ein IT-Thema“, stimmt Dr. Sebastian Schmitz, Senior Manager bei der Industrie 4.0 Maturity Center GmbH, zu. „Die Digitalisierung hat hohes Potenzial für produzierende Unternehmen, aber viele kämpfen mit der Transformation.“ Deshalb sollten Digitalisierungsprojekte sorgfältig geplant werden und berücksichtigen, was über die Neuordnung von Datenströmen hinaus passiert.

Erste Erfahrungen haben gezeigt, wie wichtig es ist, Geschäftsprozesse und -modelle zu hinterfragen, sich bewusst mit der Unternehmenskultur auseinanderzusetzen und Mitarbeiter aktiv in die digitale Transformation einzubinden.

Big Data ist nicht mehr nur ein theoretisches Konzept – es ist schon heute Teil der industriellen Praxis mit sehr greifbaren Ergebnissen in einer ganzen Reihe von Anwendungen. Dr. Martin Hollender, ABB Corporate Research Center, nennt ein Beispiel: „Aus Produktionsdaten aus der Vergangenheit können wir Wissen destillieren, mit sich aktuelle Produktionsläufe optimieren lassen.“ Aber die Daten lassen sich auch herunterbrechen, um einzelne Komponenten zu untersuchen. „Bei Borealis gab es schwerweigende Ausfälle an einem großen Kompressor, und der Grund war nicht erkannbar“, sagt Herbert Andert, Group Leader EIC & Automation bei VTU Engineering. „Mit Hilfe von Prozessdaten aus der Vergangenheit und in enger Zusammenarbeit zwischen Technikern und Datenspezialisten konnten mögliche zugrundeliegende Ursachen identifiziert werden.“

Air Liquide geht noch einen Schritt weiter: Das Unternehmen hat in verschiedenen Regionen sogenannte „Smart Innovative Operation Centers“ (SIO) eröffnet. Sie ermöglichen nicht nur die Fernsteuerung des Betriebs und vorausschauende Wartung, sondern auch die Prozessanpassung an den Kundenbedarf in Echtzeit.

Mit der Zentralisierung und Digitalisierung des Betriebs hat Air Liquide seinen Umgang mit Daten verändert. Die Einführung der SIO-Ströme und eine kontextuelle Datenbank für Datenserien über die Zeit sind Teil dieses Wandels.

Moussa Diakhité ,Real time Engineer, Air Liquide France Industrie, France

Es mag also bald soweit sein, dass nicht mehr Öl oder Gas die wichtigsten Rohstoffe für die chemische Industrie sind; der Zugang zu Daten und das Wissen und die Methoden, aus ihnen Wert zu generieren, könnten über den zukünftigen Unternehmenserfolg entscheiden.

Jedes Unternehmen, das größere Datenmengen generiert oder darüber verfügt, muss sich mit Smart Data und Künstlicher Intelligenz auseinandersetzen, um die nächsten zehn Jahre im Markt zu überleben.

Dr. Rene Fassbender, CEO & Founder, OmegaLambdaTec GmbH, Germany

Die Rohstoffbasis erweitert sich also, und „Erkundung“ bezieht sich nicht mehr nur auf Öl- und Gasquellen: „Big Data ist das Rohmaterial der Prozessindustrie. Der zukünftige Wettbewerbsvorteil eines Unternehmens hängt wesentlich davon ab, ob es in der Lage ist, Big Data auszuschöpfen“, erklärt Dr. Alessandro Butté, CEO der Schweizer Firma DataHow.

Treffen Sie diese und andere Experten beim DECHEMA-PRAXISforum Big Data Analytics in Process Industry am 9. und 10. April 2019 in Frankfurt und diskutieren Sie, was Big Data Analytics für Ihr Unternehmen bedeuten könnte. Hier geht es zum vollständigen Programm und zur Anmeldung

Read Full Post »

In der Regel werden bei Elektrolysen Flüssigkeiten wie Wasser oder in Flüssigkeiten gelöste Ionen, z.B. zu Metallen oder Chlor, umgesetzt. Was aber, wenn ein Gas elektrolytisch gespalten werden soll? Dieser Herausforderung stellen sich Wissenschaftler von Siemens im Forschungsprojekt „Rheticus“. Dabei soll mit Hilfe von Strom aus regenerativen Quellen Kohlendioxid zu Kohlenmonoxid umgesetzt werden. Bei der Entwicklung kam den Forschern der Zufall zu Hilfe, erzählt Günter Schmid, Principal Key Expert Research Scientist bei Siemens: „Kollegen von Covestro und ich habe vor einiger Zeit entdeckt, dass Sauerstoffverzehr-Kathoden aus der Chloralkalielektrolyse auch in der Lage sind, CO2 zu reduzieren. Natürlich ist einiges an Nachentwicklung notwendig, aber wir konnten in einer gemeinsamen Veröffentlichung von Evonik, Covestro und Siemens bereits eine Lebensdauer von 1200 Stunden nachweisen.“ Im Kopernikus-Satellitenprojekt Rheticus arbeiten die Unternehmen jetzt daran, diese Elektrolyse in den industriellen Maßstab zu bringen. Das gebildete CO dient dann als Grundlage für einen fermentativen Prozess, in dem Butanol und Hexanol erzeugt werden.

Der kontinuierliche Betrieb sei am Anfang die größere Herausforderung gewesen, erzählt Schmid: Die Elektrolysezelle basiert auf zwei Kreisläufen: Auf der Anodenseite wird Wasser oxidiert. An der Kathode wird CO2 zu CO reduziert. Eine der Herausforderungen: Die Löslichkeit von CO2 in Wasser. „In einer Limoflasche sind maximal 2 g CO2 pro Liter gelöst. Das ist nicht viel, Stromdichten von mehreren 100 mA pro cm² kann man damit nicht erreichen“, erklärt Schmid. „Deshalb setzt man die sogenannte Gasdiffusionselektrode ein.“ Deren Kern bildet ein Metall- oder Kunststoffgitter, in das ein Katalysator eingepresst wird. Dabei muss die Porengröße so bemessen sein, dass der Elektrolyt nicht hindurchläuft, aber Gas eindringen kann. Dass das CO2 den Wettbewerb um Elektronen gegen das umgebende Wasser gewinnt, obwohl an der Elektrodengrenzfläche die Relation 2 Gramm CO2 pro kg Wasser beträgt, liegt an der hohen Überspannung des Silbers gegenüber Wasserstoff – stimmt hier ein Parameter nicht, entsteht anstelle des CO vor allem Wasserstoff. „Wie man diese Faraday-Effizienz richtig „tuned“, haben wir im Projekt gelernt“, sagt Günter Schmid. Bei Design und Optimierung solcher Gasdiffusionselektroden sind zahlreiche Faktoren zu beachten – Leitfähigkeit, Morphologie, chemische Zusammensetzung, Porosität und Durchdringdruck, bei dem das Gas eindringt, aber nicht „durchblubbert“. Und natürlich spielen sie auch beim Scale-up eine entscheidende Rolle.

PF Electrolysis AnzeigeUm den Stromkreis zu schließen und einen kontinuierlichen Betrieb zu gewährleisten, müssen Ladungsträger zwischen Wasser und CO2 hin und her bewegt werden. „Im einfachsten Fall sollten die Protonen, die an der Anode entstehen, das Hydroxid an der Kathode neutralisierten und so hätten wir unseren Stromkreis geschlossen“, erklärt Schmid. Der Teufel liegt im Detail, denn je nachdem, welche der vorhandenen Ionen für den Ladungsausgleich sorgen, kommt es zu unerwünschten Nebenreaktionen. Über die Konzentration des Elektrolyten und die Auswahl der Membran lässt sich zwar steuern, welche Ionen zwischen den Zellen wandern. Aber die Ionen nehmen beim Durchtreten der Membran immer auch Wassermoleküle mit, und damit kommt es im Laufe des Betriebs zu Verdünnungs- und Konzentrationseffekten in den Teilzellen. Deshalb haben die Forscher ein System entwickelt, bei dem in einem externen Mischgefäß für einen Ausgleich gesorgt wird. Zudem wurde die Anode direkt auf die Membran aufgebracht, um mit einer „Zero-Gap-Anordnung“ möglichst wenig Elektrolytwiderstand zu erreichen. „Wenn das ausbalanciert ist, läuft es – auch nach 1250 Stunden war die Versuchsanordnung stabil“, erklärt Schmid.

Da es sich bei der Elektrolyse um eine Flächentechnologie handelt, steht dann als nächster Schritt für die Skalierung ins Volumen die Verschaltung mehrerer Zellen zu einem Stack an. Durch das Hintereinanderschalten der Einzelzellen mit 3-5 Volt Betriebsspannung wird der Elektrolyseur auch kompatibel zu den deutlich höheren Spannungen, die das Netz bereitstellt.

Im Rahmen des Projektes ist es gelungen, ohne Akkumulation von Nebenprodukten Stromdichten von 300 mA/cm² zu erreichen. „Damit hatten wir eine Schwelle überschritten, wo man sich sagt: Wir sollten weitermachen“, sagt Schmid. Aktuell geht es nun darum, die Plattengrößen auf 300 cm² zu erhöhen; der Wunsch der Wissenschaftler wäre eine 3 m²-Elektrode wie in der Chloralkalielektrolyse, in der allerdings 120 Jahre Entwicklung stecken. Doch Günter Schmid ist optimistisch; im Dezember 2019 soll die erste Anlage in den Testbetrieb gehen und aus erneuerbarer Energie Chemikalien erzeugen.

Wenn Sie mehr über neue Technologien und Anwendungen für Elektrolyse hören wollen, registrieren Sie sich jetzt für das PRAXISforum „Electrolysis in Industry“ am 22. und 23. November 2018 in Frankfurt.

Read Full Post »

Dass Forschungsprojekte erfolgreich sind, ist glücklicherweise keine Seltenheit. Dass sie  allerdings so erfolgreich sind, dass zwei Großunternehmen nach einem Projektjahr den Bau einer Kleinanlage ins Auge fassen, ist dann doch eher selten. Grund genug, einmal nachzufragen – bei Dr. Günter Schmid, Principal Key Expert Research Scientist bei Siemens:

GSchmidHerr Schmid, herzlichen Glückwunsch an Sie und Ihren Projektpartner Dr. Thomas Haas von Evonik – Sie sind quasi von Ihrem Erfolg überrollt worden.

Ja, das kann man sagen. Unser Projekt ist im ersten Jahr so erfolgreich gelaufen, dass wir uns entschieden haben, den nächsten Schritt zu gehen und in Richtung einer vollständig automatisierten Kleinanlage zu skalieren. Derzeit planen wir, im Dezember 2019 unsere Einzelprozesse zu verkoppeln.

Worum geht es im Projekt von Siemens und Evonik genau?

Unser Projekt heißt Rheticus und ist ein Satellitenprojekt der Kopernikus-Initiative. Wir wollen aus erneuerbaren Rohstoffen Spezialchemikalien herstellen. Die „Rohstoffe“ sind Elektronen aus erneuerbarer Energie, CO2 und Wasser. Die Energie bringen wir über eine Elektrolyse in das System: Wir elektrolysieren CO2 zu Kohlenmonoxid, Wasser zu Wasserstoff, und das verfüttern wir dann an die Bakterien.

Warum setzen Sie ausgerechnet auf ein biotechnologisches Verfahren?

Wir arbeiten mit anaeroben Bakterien, wie sie beispielsweise an „Black Smokern“ in der Tiefsee vorkommen. Wir benutzen zwei Bakterienstämme, bei denen einer der Stämme  ein Gasgemisch aus Wasserstoff, Kohlenmonoxid und Kohlendioxid zu Acetat und Ethanol umsetzt. Ein zweiter Stamm produziert aus diesen Intermediaten anschließend Butanol und Hexanol.

Die Biotechnologie bietet zwei Vorteile: Sie arbeitet sehr selektiv und effizient in der CO2 Nutzung, und sie lässt sich dezentral einsetzen, auch unabhängig von einem integrierten Chemiestandort. Wir können solche Anlagen dort aufbauen, wo auch die erneuerbaren Energien anfallen.

 

 

Wie sind Sie bei der Auswahl der Zielprodukte vorgegangen?

An dieser Frage haben wir ziemlich lang gearbeitet. Bei fossil basierten Produkten bezahlt man nur für Prozess, Transport und Förderung, aber nicht für den Energieinhalt. Bei Produkten auf Basis erneuerbarer Energie ist der Energieinhalt einer der größten Kostentreiber. Wir brauchen also Produkte, bei denen der Anteil der Energie an den Kosten möglichst gering ist, und das ist bei der Spezialchemie der Fall. Außerdem können wir mit kleineren Anlagen starten, bevor wir dann in den Bereich der Bulkchemikalien oder der Kraftstoffe eintreten.

 

Wie sauber muss das CO2 sein, das Sie einsetzen?

Die Ansprüche an das CO2 sind vergleichsweise gering. So stören viele Schwefelverbindungen oder Sauerstoff den Prozess nicht, nur Metalle, die als Katalysatorgifte wirken, müssen vorab aus dem Rauchgas entfernt werden. Wir gehen aber trotzdem davon aus, dass wir das CO2 vorher aufreinigen, denn das können wir leicht aus Luft abtrennen, während Kohlenmonoxid sehr schwer von Stickstoff und Sauerstoff zu befreien ist.

 Wo liegt die größte technische Hürde?

Im Moment sind wir in der Fermentation im 2-Liter-Maßstab und wir wollen in den Kubikmeter-Maßstab kommen. Wir müssen also sowohl die Elektrolyse als auch die Bioreaktoren scalieren. Bisher hat noch niemand einen Gas-/Gas-Elektrolyseur gebaut, schon gar nicht in diesen Größenordnungen.

Inwieweit ist die Technologie auch dazu geeignet, Schwankungen in der Stromerzeugung abzupuffern?

Die Technologie ist sehr flexibel. Wir haben Betriebsmodi entwickelt, bei denen man die Leistung rauf- und runterfahren kann. Die untere Grenze bildet ein Standby-Modus; das ist auch für die Fermentation anwendbar.

Was ist Ihr nächstes Ziel?

Bis jetzt entwickeln wir die Einzelkomponenten aus dem Labormaßstab von 10 cm² auf 300 cm² – das ist ein Riesensprung. Für die weitere Skalierung bauen wir dann mehrere Zellen – ein Stack aus etwa zehn Zellen wäre ein Zwischenschritt, mit dem man erst einmal alles demonstrieren kann, was man so braucht. Wir haben im Rahmen von Kopernikus einen kontinuierlichen Betriebsmodus entwickelt, und in 2019 wird die erste echte Kopplung mit allen Anlagen stattfinden. Ziel ist eine automatisierte Kleinanlage, die eine kleine zweistellige Tonnage pro Jahr produzieren kann. Das heißt, wir sprechen von Elektrolyseuren im Kilowattbereich und Fermentern von im Bereich von 1 m³ Größe.

Wer mehr zu den vielen Einsatzmöglichkeiten der Elektrolyse und den aktuellesten technischen Entwicklungen erfahren und sich mit anderen Experten austauschen möchte, hat dazu Gelegenheit beim PRAXISforum Electrolysis in Industry am 22. und 23. November 2018 in Frankfurt – jetzt Programm ansehen und anmelden!

Read Full Post »

Durch die Energiewende und den steigenden Anteil an erneuerbaren Energien mit volatiler Verfügbarkeit gewinnt die Kopplung von Energie- zu Chemiesektor neuen Schwung – und die Elektrolyse an Bedeutung. Denn die Elektrolyse ist der Schlüssel bei vielen hochaktuellen Prozessen und die entscheidende Schnittstelle zwischen Strom- und Chemiesektor.

Unter dem Stichwort „Sektorkopplung“ geht es dabei darum, Strom für die Herstellung von Kraftstoffen oder Chemikalien zu nutzen. In fast allen Verfahren spielt die Elektrolyse eine Schlüsselrolle. Dabei bildet die Wasserelektrolyse einen Schwerpunkt. Der durch die Aufspaltung von Wasser gewonnene Wasserstoff kann entweder als Energieträger beispielsweise für Brennstoffzellen eingesetzt oder in die Produktion von Chemikalien eingespeist werden. Dementsprechend vielfältig ist die Zahl der Projekte: Fast täglich wird über neue Bauvorhaben berichtet, von der lokalen Wasserstoff-KWK-Anlage bis zu Megaprojekten wie die geplanten 10- und 20-MW-Projekte, die AkzoNobel bzw. Shell Anfang 2018 angekündigt haben. Gleichzeitig schreitet die Entwicklung der Elektrolysezellen voran: Neue Elektrodenmaterialien oder Entwicklungen wie die PEM-Elektrolysezellen sorgen dafür, dass die Verfahren immer effizienter und je nach weiterer Nutzung des Wasserstoffs auch wirtschaftlich wettbewerbsfähig werden. In einem Bericht von April 2018 an das BMWi weisen Wuppertal Institut und Fraunhofer ISI jedoch darauf hin, dass die verfügbaren Elektrolyseure keine Serienprodukte sind und ein notwendiger Scale-Up schnell erfolgen muss. Daraus ergäben sich auch Chancen für den Exportmarkt.

PF Electrolysis Anzeige

Und längst richtet sich das Augenmerk nicht mehr nur auf die Wasserstoffproduktion. Auch die Co-Elektrolyse von Wasser und Kohlendioxid zu Synthesegas wird derzeit genauer untersucht. Im Forschungsprojekt Rhetikus streben Siemens und Evonik ein Verfahren zur Umwandlung von Kohlendioxid zu Butanol und Hexanol mit Hilfe von regenerativem Strom und Mikroorganismen an. Siemens liefert die Elektrolysetechnik und entwickelt dabei den ersten Gas-Gas-Elektrolyseur im industriellen Maßstab.

Auch, wenn dabei die Erzeugung werthaltiger Chemikalien im Mittelpunkt steht, bringt das Verfahren noch einen zweiten Aspekt mit, der es für die Kopplung an erneuerbare Energieträger besonders interessant macht: Es lässt sich innerhalb eines gewissen Rahmens hoch- und runterregeln und könnte damit je nach Stromangebot mehr oder weniger Energie pro Zeiteinheit nutzen.

Das gilt nur in sehr geringem Umfang für den Klassiker unter den Elektrolyseverfahren, die Chlor-Alkali-Elektrolyse. Denn das gebildete Chlor ist der Ausgangspunkt für viele weitere Chemikalien, und die Produktionsmengen können nicht ohne weiteres heruntergefahren werden. Doch selbst in diesem vermeintlich lang ausgereiften Prozess verbergen sich noch Innovationspotenziale: So konnte durch den Einsatz von Sauerstoffverzehrkathoden der Energieverbrauch bei Covestro für die Chlorherstellung um bis zu 30 % gesenkt werden.

Welche Anwendungen in der Elektrolyse aktuell auf der Tagesordnung stehen und wie sich ihre Potenziale noch besser nutzen lassen, diskutieren Anwender und Anbieter beim PRAXISforum Electrolysis in Industry am 22. und 23. November 2018 im DECHEMA-Haus, Frankfurt. Die Anmeldung für Aussteller und Teilnehmer ist geöffnet; mehr unter http://www.dechema.de/Electrolysis

 

 

Read Full Post »

Vorfreude

Abendvortrag

Eröffnungsveranstaltung

Preise und Ehrungen

Ausstellung

Vorträge

Berichterstattung

Und drumherum…

Und jetzt? Nicht verpassen – Call for Paper für die Jahrestreffen der ProcessNet-Fachgruppen im Frühjahr 2019!
Alle weiteren Treffpunkte für Verfahrenstechniker und Biotechnologen immer aktuell im Veranstaltungskalender – wann sehen wir uns?

Read Full Post »

Older Posts »