Feeds:
Beiträge
Kommentare

Archive for the ‘Biotechnologie’ Category

Letzte Woche stellten wir im ersten Teil des Interviews mit der DECHEMA-Preisträgerin 2018 Dörte Rother ihre wissenschaftliche Arbeit vor. Im zweiten Teil geht es um die Frage, wie der Schritt in die industrielle Umsetzung gelingt und warum die Chancen dafür derzeit außerhalb Deutschlands besser stehen.

Wo sehen Sie die größte Hürde bei der industriellen Umsetzung?

Die größte Hürde sind die Katalysatorkosten. Daran sind auch schon industrielle Umsetzungen mit Kooperationspartnern gescheitert. Die Enzymkaskaden selbst funktionieren sehr gut, wir halten alle Spezifikationen ein und erreichen auch die nötigen Produktkonzentrationen. Aber die Kosten für die Enzyme lassen sich schwer senken, besonders für kleinere Ansätze. Was im ganz großen Maßstab vielleicht akzeptabel wäre, ist bei Volumina von ein paar Hundert oder Tausend Liter nicht kompetitiv.

Dazu kommt, dass viele klassische pharmazeutische Firmen oft nicht die nötigen Lizenzen für Arbeiten mit gentechnisch veränderten Mikroorganismen haben. Wird die günstige Ganzzellformulierung gewählt, muss nachgewiesen werden, dass die eingesetzten Zellen wirklich tot sind, wenn sie geliefert werden, sonst sind die entsprechenden Zulassungen notwendig. Generell  treten wir gegen bestehende, lang etablierte Prozesse an. Wenn man vorhandene Prozesse verändert, braucht man besonders im Pharmabereich oft eine neue Zulassung; das kann teuer und langwierig werden.

Sie arbeiten in letzter Zeit verstärkt mit internationalen Partnern – warum?

Wir stellen fest, dass in letzter Zeit zunehmend mehr Interesse beispielsweise von chinesischen Firmen für unsere enzymatischen Ansätze kommen. In China wurden die Umweltauflagen verschärft, und es kann passieren, dass Unternehmen, die sie nicht einhalten, stillgelegt werden. Damit eröffnet sich für uns eine Chance – wir treten eben nicht gegen bestehende Referenzprozesse an und haben damit eine bessere Position, um unsere biokatalytischen Kaskaden umzusetzen.

Wie sind Sie auf dieses Forschungsgebiet gekommen?

Ich habe Biologie studiert, aber schon im Grundstudium gemerkt, dass mich der Schwerpunkt Biotechnologie besonders interessiert, und mich dann in Richtung Biokatalyse und Bioverfahrenstechnik spezialisiert. Biokatalyse eröffnet alternative Synthesemöglichkeiten mit vielen Aspekten, die für Nachhaltigkeit relevant sind. Das ist mir besonders wichtig.

Wo sehen Sie die Zukunft Ihrer Forschungsansätze?

Je reiner und komplexer das Produkt, desto ökonomischer ist ein multi-enzymatischer Prozess. Besonders im Pharmabereich lohnt es sich, mit hochselektiven Biokatalysatoren zu arbeiten, weil wir es viel mit optisch aktiven Produkten zu tun haben, die hochrein hergestellt werden müssen – da können Enzyme ihre Vorteile voll ausspielen. Bei nicht-optisch aktiven Bulkprodukten ist die chemische Synthese vielfach schneller und günstiger.

Würde man die ökologischen Kosten zusätzlich berücksichtigen, zum Beispiel über Zertifikate für CO2 oder ökologisch sensible Lösungsmittel, würde sich das Verhältnis möglicherweise zugunsten grüner Syntheseansätze aus der Chemie und verstärktem Einsatz von Enzymen (die ja selber untoxisch sind) verschieben. Wir sehen ja am chinesischen Beispiel, wie ein solcher Umbruch aussehen kann. Auch hier steigt das Bewusstsein für Nachhaltigkeits-Aspekte. Ich glaube, dass es wichtig ist, jetzt Lösungen zu entwickeln, die man hervorholen kann, wenn sie gebraucht werden. Die Autoindustrie ist da ein gutes Beispiel – es ist gut, vorbereitete Alternativen wie die Elektromobilität zu haben, die weiterentwickelt werden können, wenn sich die Rahmenbedingungen ändern, statt bei Null anzufangen.

Ich kann mir vorstellen, dass ein ähnlicher Bewusstseinswandel auch bei der Produktion von Materialien und Pharmaka kommen wird, und in diesem Bereich sehen wir uns.

https://dechema.de/Veranstaltungen/DECHEMA_Tag+2019.html

Was sind Ihre nächsten Vorhaben?

Ich glaube an die Vorteile von Enzyme, aber ich glaube, es gibt auch Fälle, wo der Einsatz chemischer Katalysatoren günstiger sein kann, nicht nur ökonomisch sondern ebenfalls in Bezug auf die Ökobilanz. So haben wir in mehrschrittigen Synthesen auch schon ein Enzym gegen Phosphatpuffer, in dem die Kaskade sowieso stattfand, ersetzen können. Da das Startsubstrat optisch sehr rein war, fand der Phosphat-vermittelte Schritt ebenfalls mit hohen Selektivitäten zu einem reinen Produkt mit drei optisch aktiven Zentren statt. Ein schönes Beispiel dafür, dass man immer den besten Katalysator verwenden sollte, der zur Verfügung steht. Egal, welcher Natur er ist. Und dies nach ökonomischen und ökologischen Kriterien bewerten sollte.

Wir arbeiten gerade mit Kooperationspartnern daran, nicht nur chemische Katalysatoren und Enzyme miteinander zu kombinieren, sondern diese in hybriden Prozessen mit mikrobiellen Zellfabriken zu koppeln. Die Zellfabriken können beispielsweise aus nachwachsenden Rohstoffen wie Bagasse sowohl die aromatischen als auch die aliphatischen Ausgangsstoffe für unsere Kaskaden herstellen. Wie sehen die Schnittstellen aus, wie lassen sich chemo-enzymatische Kaskaden mit lebenden Ganzzellkatalysatoren kombinieren, an welchen Stellen muss ich aufreinigen? – das sind sehr spannende Fragestellungen, mit denen wir uns beschäftigen.

Was wäre Ihr persönliches Traumprojekt?

Ich würde gerne zusammen mit akademischen und industriellen Partnern einen Prozess komplett von den nachwachsenden Rohstoffen bis zum hochreinen Produkt entwickeln und umsetzen, und das vom Labor bis zum Industriemaßstab. Ein solcher kompletter hybrider Prozess könnte dann als Blaupause für andere Prozesse dienen. In einigen Kooperationsprojekten sind wir auf einem guten Weg, diesem Ziel näher zu kommen.

Ich denke, wir brauchen gute Modellprozesse, damit Firmen auf den Zug aufspringen. Und dann bräuchten wir die politischen Rahmenbedingungen, um den Wandel hin zu solchen Prozessen zu vollziehen.

Auf der anderen Seite arbeiten wir aber auch am Verständnis von Enzymkaskaden im deutlich grundlagenorientierteren Bereich. Hier versuchen wir derzeit, Enzyme in ihrer Aktivität durch externe Stimuli regulieren können. Je komplexer eine Enzymkaskade wird, desto höher ist die Wahrscheinlichkeit von Nebenproduktbildungen. Wir lösen das bisher über räumliche Trennung, also Kompartimentierung und modulare Prozesse. Das geht gut. Meine Vision ist aber, alles in einem Topf durchführen zu können und die Enzyme je nach Bedarf „ein- und auszuschalten“. Am besten kombiniert mit einer Feedbackschleife, bei der die Inline-Analytik signalisiert „das erste Substrat ist aufgebraucht, schalte Stufe 2 ein“. An so einem Konzept arbeiten wir gerade. Wir möchten ausdrücklich nicht die Expression regeln, sondern das Enzym selbst, und das ist herausfordernd. Hier arbeiten wir mit Licht und Mikrotemperaturen als Stimuli und hoffen so, eines Tages einen derartig geregelten Eintopfreaktor präsentieren zu können. Einzelne Aspekte klappen bereits, aber bis alle Schritte ineinander greifen wird es noch eine Weile dauern.

Die beiden Beispiele zeigen, dass wir sowohl akademische Herausforderungen angehen als auch die (spätere) Applikation im Sinn haben. Ich finde, es ist unsere Aufgabe als Wissenschaftler, auch die Anwendung zu sehen und zu versuchen, die Ergebnisse in neue Technologien umzusetzen. So können wir nachhaltige Prozesse entwickln, die ökologische und ökonomische Aspekte verbinden und so bestenfalls unseren ökologischen Fußabdruck reduzieren, selbst wenn wir nicht bereit sind, an unserem bereits erworbenen hohen Lebensstandard zu rütteln. Über den letzten Punkt sollte man auch diskutieren – aber das ist eine ganz andere Geschichte.

Wenn Sie mehr über die Arbeit von Dörte Rother erfahren oder mir ihr ins Gespräch kommen möchten – kommen Sie zum DECHEMA-Tag 2019 am 23. Mai 2019 ins DECHEMA-Haus!

Werbeanzeigen

Read Full Post »

Dörte Rother erhält am 23. Mai 2019 den DECHEMA-Preis 2018

Chirale Substanzen selektiv herstellen – was für den „klassischen“ Chemiker eine der größten Herausforderungen ist und in der chemischen Katalyse im wahrsten Sinne des Wortes hochkomplexe Strukturen erfordert, leisten Enzyme quasi im Handumdrehen. Dennoch ist ihre industrielle Anwendung alles andere als trivial, alleine schon wegen der Kosten. Wir sprachen mit der DECHEMA-Preisträgerin 2018 Prof. Dr. Dörte Rother über ihre wissenschaftliche Arbeit, die Herausforderungen bei der Umsetzung und ihr „Traumprojekt“. Im ersten Teil erklärt sie uns ihre Vorgehensweise, um auf Basis synthetischer Enzymkaskaden wettbewerbsfähige Prozesse zu entwickeln.

Worum geht es in Ihrer wissenschaftlichen Arbeit?

Wir arbeiten an synthetischen Enzymkaskaden. Das bedeutet, dass Enzyme miteinander kombiniert werden, die in der Natur so nicht vorkommen. Beim Metabolic Engineering werden Enzyme kombiniert, die zumindest teilweise auch in der Natur gemeinsam in synthetischen Pathways auftreten. Unser Ansatz ist, für jeden Syntheseschritt den besten Katalysator zu finden (der übrigens auch mal ein chemischer Katalysator sein kann) und diese dann zu kombinieren. Der „Baukasten“, den wir dafür nutzen, enthält Enzyme, die alle ungefähr die gleiche Reaktion unterstützen, aber sich in ihren Selektivitäten ein bisschen unterschieden. So werden leicht unterschiedliche Substrate akzeptiert oder die gewonnenen Produkte unterscheiden sich hinsichtlich ihrer optischen Aktivität – das ist besonders für den Pharmabereich sehr relevant. Wenn ich diese Enzyme mit ihren verschiedenen Selektivitäten kombiniere, bekomme ich nicht nur ein Produkt, sondern habe eine Technologieplattform für eine ganze Bandbreite von Produkten.

https://dechema.de/Veranstaltungen/DECHEMA_Tag+201

Arbeiten Sie dabei zellfrei?

Zellfrei zu arbeiten ist der einfachste Weg, aber: wir möchten die Lücke zwischen Grundlagenforschung und Anwendung schließen und unsere Kaskaden in industrielle Prozesse bringen. Das heißt, wir müssen ähnlich hohe Produktkonzentrationen erzielen wie in chemischen Synthesen, ohne deutlich teurer zu werden. Enzyme sind sehr selektiv und arbeiten unter ökologisch vorteilhaften Bedingungen – keine hohen Drücke, keine toxischen Additive, moderate Temperaturen; das sind Pluspunkte, besonders, wenn die Nachhaltigkeit im Fokus steht. Zudem sind Biokatalysatoren einfach durch Erwärmung inaktivierbar, ohne toxische Abfälle zu hinterlassen. Lauter gute Gründe, Enzyme als Katalysatoren einzusetzen.  Aber die Herstellungskosten für Enzyme sind hoch, besonders für gereinigte Enzyme. Deshalb arbeiten wir, wenn möglich, mit ganzen, oft gefriergetrockneten Zellen. Das ist circa 10fach günstiger. Diese Zellen können auch wiederverwertet oder kontinuierlich eingesetzt werden. Dazu kann man die ganzen Zellen zurückhalten oder auch gereinigte Enzym immobilisieren. Letzteres sollte möglichst kombiniert werden – also Aufreinigung und Immobilisierung in einem Schritt – alles andere ist kaum wettbewerbsfähig.

Wie genau funktioniert Ihr Ganzzellverfahren?

Die Zellen, die wir einsetzen,  sind gefriergetrocknet und daher überwiegend nicht mehr lebensfähig. Eigentlich ist das die einfachste Form der Immobilisierung: Die Enzyme, die in hohen Konzentrationen in den Zellen vorliegen, sind etwas geschützt, wir können mit vergleichsweise hohen Substratkonzentrationen arbeiten, und die Zellen lassen sich hinterher abtrennen und wieder einsetzen. Zu den Zellen geben wir dann Substrate, Lösungsmittel und eine bestimmte Menge Puffer, um gute Umsätze zu erlangen. Zumindest bei Substraten wie Ketonen konnten wir sogar im reinen Substrat ohne Zugabe weiterer Additive arbeiten. Bei sehr reaktiven und toxischen Substraten wie Aldehyden braucht man allerdings Lösungsmittel, um Deaktivierungen zu vermeiden. Wir versuchen, in den Standardsystemen der chemischen Synthese zu arbeiten. Nur so erreichen wir hohe Produktkonzentrationen beispielsweise auch mit schwer wasserlöslichen Aromaten und können das Produkt hinterher auch wieder abtrennen.

Und wie gelangt das Substrat in die Zelle?

Wir wissen es nicht ganz genau, gehen aber davon aus, dass die Membran sehr porös oder teilweise gar nicht mehr vorhanden ist. Jedenfalls haben wir bei diesem Verfahren kaum Diffusionshemmnisse. Unter dem Elektronenmikroskop sieht man, dass die E. coli-Zelle um ca. ein Drittel geschrumpft ist, aber ihre Form behält. Zumindest in den von uns gewählten mikro-wässrigen Reaktionsbedingungen zeigten nur ca. 10 % der Zellen Löcher oder andere Veränderungen. Gerade für die Industrie sind solche Ganzzellprozesse attraktiv, und sie funktionieren gut.

Worauf achten Sie bei der Prozessentwicklung besonders?

Die nachhaltige Produktion ist mir sehr wichtig. Wir verwenden zum Beispiel Lösungsmittel, die nachhaltige Kriterien erfüllen – also nicht toxisch sind und möglichst auf Basis nachwachsender Rohstoffe hergestellt wurden. Die Biokatalyse hat eine „Kinderkrankheit“: Sie ist sehr „grün“, was die Prozessbedingungen betrifft, aber am Ende liegt das Produkt oft in niedrigen Konzentrationen in einem wässrigen System vor. Um es daraus abzutrennen, wird sehr viel Lösungsmittel benötigt. Alternativ ist es möglich, in mikro-wässrigen Reaktionssystemen zu arbeiten, so wie wir es mit den gefriergetrockneten ganzen Zellen, wenn möglich, tun, um Vorteile bei der Produktaufarbeitung zu haben.

Wir versuchen, eine effektive Aufarbeitung in die Prozessentwicklung zu integrieren. Dazu planen wir von Anfang an, wie wir das Produkt am Ende aufreinigen können, und forschen parallel an den verschiedenen Prozessschritten, um den besten Gesamtprozess zu entwickeln.

Der 2. Teil des Interviews erscheint am 2. April. Dann fragen wir nach den Hürden bei Industriekooperationen, und Dörte Rother verrät uns ihr „Traumprojekt“.

Read Full Post »

Das US Biomass Research and Development (BR&D) Board hat eine gemeinsame Strategie mehrerer Bundesbehörden vorgestellt, mit der die Entwicklung innovativer Technologien beschleunigt werden soll, um die nationalen Biomasse-Ressourcen besser für die Produktion kostengünstiger Biokraftstoffe, Bioprodukte und Bioenergie zu nutzen. Das Papier mit dem Titel The Bioeconomy Initiative: Implementation Framework wurde vom B&RD Board entwickelt – eine behördenübergreifende Kooperation unter dem gemeinsamen Vorsitz des US-Agrarministeriums und des US-Energieministeriums.

“Die sich entwickelnde Bioökonomie bietet eine Möglichkeit, neue Märkte für Landwirtschaft und Forst zu entwickeln und zu erweitern und gleichzeitig die Nachhaltigkeit der modernen Wirtschaft und Umwelt auf breiter Linie zu steigern“, sagt USDA Deputy Under Secretary for Research, Education, and Economics Scott Hutchins. “Strategische Investitionen aus Bundesmitteln dienen der Entwicklung von Technologien für die Bioökonomie, die Chancenauf erneuerbare Wertschöpfungsketten, Arbeitsplätze und wirtschaftliche Entwicklung versprechen.“

“Ein wesentlicher Nutzen der Bioökonomie-Initiative ist die Möglichkeit, den Effekt von staatlichen Investitionen in Bioenergie zu maximieren und die Innovationen in der Bioökonomie zu beschleunigen“, erklärt Energy Department Assistant Secretary for Energy Efficiency and Renewable Energy Daniel Simmons. “Biobasierte Technologie können vielfältige, bezahlbare heimische Quellen für Energie und andere Produkte erschließen und Verbraucher und Unternehmen so mit zusätzliche zuverlässiger und sicherer Energie versorgen.“

 The Bioeconomy Initiative: Implementation Framework skizziert einen Ansatz, wie die Iniative umgesetzt werden kann. Das Strategiepapier wird als Rahmen für die Mitglieder des BR&D Board dienen, um die Verantwortung der Regierung klarer herauszustellen und innovative und nachhaltige Technologien zu beschleunigen, die zu einer sicheren, zuverlässigen, bezahlbaren und langfristigen Versorgung der USA mit Energie und Gütern beitragen können.

Das Papier formuliert Ziele und Handlungsempfehlungen, um Wissens- und Technologielücken auf diesen Gebieten zu schließen:

  • Fortschrittliche Systeme auf Algenbasis
  • Genetische Optimierung, verbesserte Produktion, Management und Logistik der Rohstoffbasis
  • Biomasse-Konversion und Kohlendioxidnutzung
  • Transport, Verteilungsinfrastruktur und Verwendung
  • Analytische Betrachtung der Bioökonomie
  • Nachhaltigkeit der Bioökonomie

Das Strategie-Papier zählt Handlungen auf, mit denen die Unsicherheit bei der Technologieentwicklung angegangen werden kann und Ressourcen und Fähigkeiten aus Regierung, Wissenschat und Industrie besser genutzt werden können. Außerdem sollen Public-Private-Partnerships initiiert werden und technische Informationen erarbeitet werden, um Entscheidungsträger und Politik besser zu informieren.

Das BR&D Board umfasst Vertreter der DOE, USDA, U.S. Department of Transportation, U.S. Department of the Interior, U.S. Department of Defense, U.S. Environmental Protection Agency, National Science Foundation und das Office of Science and Technology Policy innerhalb des Executive Office of the President.

Quelle: Pressemitteilung des United States Department of Agriculture vom 5. März 2019

Sie wollen mehr aktuelle Nachrichten aus Bioökonomie und Biotechnologie? Dann abonnieren Sie unseren wöchentlichen Newsletter oder informieren Sie sich über die Aktivitäten der DECHEMA auf unserer Themenseite https://dechema.de/biooekonomie.html

Read Full Post »

Der Vorsitzende der DECHEMA-Fachgemeinschaft Biotechnologie, Prof. Dr. Roland Ulber, überreicht den DECHEMA-Hochschullehrer-Nachwuchspreis für Biotechnologie an Jun.-Prof. Dr. Alexander Grünberger

Der DECHEMA-Hochschullehrer-Nachwuchspreis für Biotechnologie 2019 geht an Jun.-Prof. Dr. Alexander Grünberger, Universität Bielefeld. Mit seinem Vortrag „Einzelzellbioreaktoren in der Biotechnologie: Science oder Fiction?“ überzeugte er nicht nur die Jury, sondern auch das Publikum der Frühjahrstagung. Drei Kandidaten hatten die Gelegenheit, in einem Vortrag ihre fachliche Exzellenz darzustellen, gleichzeitig ihre Ergebnisse aber auch verständlich und spannend zu vermitteln.

Alexander Grünberger beschäftigt sich in seiner Forschung mit der Entwicklung mikrofluidischer Einzelzellbioreaktoren und deren Anwendung im Bereich Biotechnologie und Bioverfahrenstechnik. Mit solchen „Einzelzellbioreaktoren“ können Prozesse auf der Ebene individueller Zellen statt anhand des statistischen Verhaltens von großen Populationen untersucht werden. So lassen sich Wachstum oder Metabolismus einzelner Zellen räumlich und zeitlich aufgelöst beobachten.

Alexander Grünberger stellte die Möglichkeiten dieser noch jungen Technologie in seinem Vortrag anschaulich dar und verwies dabei gleichzeitig auf die derzeit noch vorhandenen Grenzen. Damit überzeugte er Jury und Publikum nicht nur von seiner wissenschaftlichen Arbeit, sondern auch davon, dass er seine Themen auch Studierenden auf Bachelor-Niveau verständlich nahebringen kann – ein wichtiges Kriterium für die Vergabe des DECHEMA-Hochschullehrer-Nachwuchspreises.

Alexander Grünberger studierte Bioingenieurwesen an der Universität Karlsruhe/KIT, fertigte seine Dissertation am Forschungszentrum Jülich an und promovierte 2014 an der RWTH Aachen. Anschließend war er als Postdoktorand am Forschungszentrum Jülich tätig, bevor er 2017 eine Junior-Professur an der Universität Bielefeld übernahm. Alexander Grünberger erhielt mehrere Auszeichnungen und Stipendien, darunter den Bioeconomy PhD Award 2014 des Bioeconomy Science Center, den VAAM PhD Award 2015 und eine Helmholtz Postdoctoral Fellowship 2016.

Der DECHEMA-Hochschullehrer-Nachwuchspreis für Biotechnologie wird jährlich an eine Wissenschaftlerin oder einen Wissenschaftler vergeben, die im Rahmen eines Vortrags sowohl hohe fachliche Exzellenz als auch die Fähigkeit bewiesen haben,  ihr Fachwissen in hervorragender Weise an Studierende zu vermitteln. Er ist mit 1500 Euro dotiert.

Read Full Post »

Neuer Service ermittelt das Marktpotenzial von Biotech-Forschungsprojekten

KETBIO, eine Initiative, um Forschungsergebnisse in den Markt zu bringen, hat ein neues Online-Portal für Biotechnologie als Schlüsselforschung aufgesetzt. Die interaktive Plattform ermöglicht der Biotech-Community nicht nur, sich online zu vernetzen und auszutauschen, sie eröffnet auch die Möglichkeit, sich auf den Markteintritt vorzubereiten: Das wichtigste Angebot von KETBIO ist die Evaluierung des Marktpotenzials von vielversprechenden Biotechnologie-Projekten.

Die Plattform steht allen Industrieexperten und Wissenschaftlern auf den verschiedenen Gebieten der Biotechnologie offen. Mit der kostenfreien Registrierung erhalten sie Zugang zu einer großen Bandbreite an Angeboten – Networking mit Experten und Gleichgesinnten, die Vorstellung von Projektprofilen, Suchen und Finden von Technologien, Marktdaten, Webinare und Kontakt zu Firmen. Hochrangige Vertreter der Biotech-Industrie sind eingeladen, dem Commercial Committee von KETBIO beizutreten, Projektergebnisse zu bewerten und Empfehlungen für die Kommerzialisierung zu geben. Durch die zusätzliche Bewerbung und mehr Sichtbarkeit für vielversprechende Projekte, die auf Industrieveranstaltugnen präsentiert werden, durch Beratung oder Unterstützung bei Lizenzfragen helfen die KETBIO-Technologietransfer-Experten dabei, Forschungsergebnisse schneller in den Markt zu bringen.

KETBIO ist eine EU-finanzierte Coordination Action im Forschungsprogramm HORIZON 2020 für Forschung in Schlüsseltechnologien. Die Initiative soll die europäische Innovationsfähigkeit fördern. Biotechnologie-Forschung ist einer der wesentlichen Treiber für die Kreislaufwirtschaft und bietet Technologie für verschiedene Gebiete wie Bioraffinerien, Meeres- und Süßwassertechnologien, Energie- und Abfallverwertung, Lebensmittel-, Futtermittel- und Textilproduktion, Landwirtschaft und vieles mehr.

Insgesamt umfassen die Schlüsseltechnologien (Key Enabling Technologies, KET) sechs Technologien: Mikro- und Nanoelektronik, Nanotechnologie, Industrielle Biotechnologie, Advanced Materials, Photonik, und fortschrittliche Produktionstechnologien. Die Initiative „Leadership in Enabling and Industrial Technologies (LEIT)“, die die industriellen Fähigkeiten in Europa weiterentwickeln soll, ist Teil des Programms HORIZON 2020. Sie unterstützt die Entwicklung von Technologien, die Innovationen in einer ganzen Reihe von Branchen ermöglichen. Das 2017 begonnene KETBIO-Projekt gehört zur Implementierungsphase. Das Konsortium unter Leitung der DECHEMA vereint Kenner der chemischen Industrie, Wissenschaftler, Innovations- und Technologie-Transferexperten und Kommunikationsfachleute aus sechs europäischen Ländern.

Registrieren Sie sich jetzt auf www.ketbio.eu und gestalten Sie mit! Oder folgen Sie uns auf Twitter: @ketbio_biotech

Read Full Post »

Leroy Cronin von der University of Glasgow und sein Team konstruierten ein universelles chemisches Synthesesystem, das ohne den Einsatz eines menschlichen Bedieners funktioniert. Es besteht aus miteinander verbundenen Modulen, die über einen standardisierten Computercode gesteuert werden. Die Module umfassen Reaktor, Filter, und Separator, verbunden durch ein „Rückgrat“ von Sechswegeventilen und Spritzen und Pumpen, die Reaktionsgemische zwischen den Modulen transportieren. Neben der Robotik ist die Integration von Analytik entscheidend, um Reaktionsverläufe zu überwachen und Status von Trennoperationen zu verfolgen. Nach Validierung des Systems erzeugte der Synthesizer gemäß den von den Autoren vorgegebenen synthesespezifischen Computercodes autonom die pharmazeutischen Verbindungen Diphenhydraminhydrochlorid, Rufinamid und Sildenafil.

Zur Publikation

Sie finden diese Nachricht interessant? Mehr davon finden Sie in unserem wöchtenlichen DECHEMA-Themennewsletter Biotechnologie & Bioökonomie – abonnieren Sie ihn kostenlos und unverbindlich.

Read Full Post »

Mit Kunstobjekten aus Pilzen möchte die Berliner Biotechnologie-Professorin Vera Meyer den Blick hinter das Offensichtliche lenken, aber gleichzeitig in der Öffentlichkeit auch mehr Interesse über das enorme Potenzial von Pilzen wecken.


Iyora I (Bild: V.meer)

Eine Steilwand, ein Riff mit abblätterndem Gestein; unwillkürlich sucht der Blick nach dem Meer, das diese Struktur geformt haben könnte. Oben neben einem schroffen Felsen ein sanftes Tal; an den Rändern schmiegen sich weiche goldene Formen an den braunen Untergrund und ergießen sich auf der anderen Seite in eine Schlucht. Man möchte eintauchen in diese Landschaft und erkunden, was sich in den Winkeln und Nischen verbirgt. Doch hier kann man nicht spazieren gehen, es ist keine Insel, die aus dem Meer aufragt oder eine Bergformation über Almwiesen, sondern ein von Pilzen besiedeltes Baumstück.

Die Berliner Biotechnologie-Professorin Vera Meyer hat daraus ein Kunstwerk geschaffen. „Über Jahre hinweg lag an unserer Lagerfeuerstelle ein toter Stamm einer Birne fast unverändert“, erzählt sie. „Im regenreichen Sommer 2017 wurde er jedoch binnen kürzester Zeit von Pilzen besiedelt und zersetzt.“ Im Titel der Skulptur „Iyora I“ verbirgt sich gleichzeitig, was sie in dem Werk sieht: 2018 war IYOR das International Year of the Reef, und tatsächlich kann man auch Anklänge an ein Korallenriff in den Strukturen des Holzes und der Pilze entdecken.

Unter dem Namen V. meer ist Vera Meyer schon länger künstlerisch aktiv. Jedes Jahr zieht sie sich für zwei Wochen an einen Ort zurück, wo sie sich ganz auf die Kunst konzentrieren kann. Nachdem sie sich mit verschiedenen Ausdrucksformen – Malerei, Plastik, Zeichnungen – beschäftigt hat, hat sie 2016 Pilze als Kunstobjekte für sich entdeckt. Während eines Sabbaticals im vergangenen Jahr hatte sie die Möglichkeit, sich noch intensiver damit zu beschäftigen und für sich Wege auszuprobieren, wie sie ihrer wissenschaftlichen Arbeit mit Hilfe künstlerischer Mittel „ein Bild geben kann“.

Denn auch beruflich arbeitet Vera Meyer mit Pilzen, allerdings bisher hauptsächlich mit Schimmelpilzen. „Bei Schimmelpilzen denken die meisten Menschen an Verwesung oder Ekliges – alles nicht besonders sexy. Waldpilze und Baumpilze dagegen, begeistern viele Menschen.“


Growth and decay series (2017) (Bild: V.meer)

Die Idee, sich künstlerisch mit Pilzen auseinanderzusetzen, kam ihr angesichts der Bronzefigur „Kleine Tänzerin“ von Edgar Degas. „Ich stand vor der Skulptur einer trotzigen Balletttänzerin aus Bronze, Seide und Tüll auf einem Holzsockel. Sie war schön, stolz und unnahbar. Das Tutu erinnerte mich an einen Waldpilz mit einem Hut aus Lamellen. Es begann in mir zu arbeiten und ich ging der Frage nach, wie ich aus Pilzen Skulpturen schaffen könnte, die sie in Szene setzen oder durch Verfremdung – einer Art Metamorphose – gar eine neue Figur werden ließen. Durch die Mittel der Bildhauerei erhoffte ich, die Schönheit der Pilze sichtbar zu machen.“ Dabei trennt sie nie zwischen dem „wissenschaftlichen“ und dem „künstlerischen“ Blick: „Wenn ich einen Schimmelpilz unter dem Mikroskop anschaue, beeindruckt und ergreift mich das immer wieder. Die morphologischen Strukturen, die sich aus pilzlichen Mycelwachstum ergeben sind einfach wunderschön.“  Und was ist aus ihrer Malerei geworden? „Ich habe mich in der Malerei an meinen künstlerischen Vorbildern wie Mark Rothko, Jackson Pollock und Gerhard Richter abarbeiten und reifen können. Jetzt bin ich soweit, etwas zu schaffen, das ganz für mich steht.“

Doch die Begeisterung für Pilze als Kunstwerke geht über das rein Ästhetische hinaus: Für V. meer lenken Pilze den Blick auf das Geheimnisvolle, Unsichtbare. „Pilze wachsen unter der Erde und werden nur im Herbst mit ihren Fruchtkörpern für ein paar Wochen für uns sichtbar, aber eigentlich sind sie immer da. Pilze sind die kleinsten aber auch die größten Organismen auf dieser Erde. Und sie sind widersprüchlich: Sie können Tod und Verderben bringen, krank machen und Halluzinationen verursachen, aber andererseits sind sie auch wichtige Zellfabriken für unsere Antibiotika, Arzneimittel, Lebensmittel und essentiell für eine grüne Chemie.“ Menschen neigten dazu, sehr schnell zu entscheiden, wie etwas ist, oder nicht ist. Mit ihren Arbeiten will V. meer anregen, einen zweiten oder gar dritten Blick auf die Dinge zu wagen und dazu anregen, hinter die Kulissen zu schauen.

Durch die Arbeit an den Skulpturen hat sich auch verändert, welche Rolle die Kunst für sie spielt. „Am Anfang war Kunstschaffen für mich als etwas Meditatives gedacht, als eine Art Gegenentwurf zu meiner wissenschaftlichen Arbeit – ich ließ die Hände arbeiten, nicht den Kopf. Es war herrlich und befriedigend, wenn aus dem Prozess heraus etwas Kunstvolles entstand.“, beschreibt sie ihr Verhältnis zur Kunst. Doch während sie in der Vergangenheit eher „für sich“ gemalt hat, möchte sie nun mit den Pilzkunstwerken auch andere Menschen erreichen. Dafür sammelt sie Pilze, Holz und Metall, alles was ihr der Wald bietet, und verbindet diese Materialien zu mal mehr, mal weniger stark verfremdeten Skulpturen. „Mal sehe ich einen Pilz und denke: Der ist schon fertig, den kann ich so wie er ist bereits zeigen. Oder aber ich erkenne, das etwas anderes in dem Fundstück verborgen ist, welches ich versuche herauszuarbeiten. So verändern Pilze ihre Form und durchleben, obwohl sie tot sind, eine Metamorphose.“ Ihre neueste Serie ist von Göttermythen der Skythen inspiriert, ein Reitervolk am Schwarzen Meer, bei dem Herodot den Ursprung der Amazonen verortete.

„Ich vermute, dass die Wurzeln meiner Vorfahren dort liegen. Um die Jahrtausendwende wurden die ersten Skythengräber entdeckt, in denen auch weibliche Kriegerinnen bestattet waren. Man weiß wenig über die Skythen, wie sie aussahen und wie sie gelebt haben. Jedoch sind viele Mythen mit ihnen verbunden. Ich sehe hier viele Analogien zu den Pilzen. Wir können nur Weniges über sie mit Sicherheit sagen, wir stehen noch am Anfang ihre Biologie zu entziffern aber sie ziehen viele Menschen fast mysthisch in ihren Bann. Ich fange daher nun einfach an, Geschichten zu erzählen. Über Skythen und Pilze“ sagt V. meer.

Einige ihrer Kunstwerke hat sie mittlerweile auch an ihrem Arbeitsplatz stehen. Darüber kommt sie mit vielen Menschen ins Gespräch. „Für mich hat sich so ein neues Fenster geöffnet über das zu berichten, was wir in der Wissenschaft tun. In einer Art und Weise, die auch dazu inspiriert, in neue Richtungen zu denken.“

Ihre nächsten Vorhaben? „Wir arbeiten in einem Citizen-Science-Projekt mit dem Art Laboratory Berlin zusammen, um Pilzbiotechnologie und Kunst zusammenzuführen.“ Dabei befruchten sich Wissenschaft und Kunst gegenseitig: „Das Citizen-Science-Projekt adressiert reinste Bioökonomie – wie können wir mit Hilfe von Baumpilzen aus pflanzlichen Abfällen, d.h. aus Lignin und Cellulose, neuartige Materialen biotechnologisch gewinnen.“ Denn in ihrer wissenschaftlichen Arbeit will sich Vera Meyer zunehmend mit dieser Thematik beschäftigen. Und für den nächsten Sommer hat sie schon Pläne für neue Pilzskulpturen: „In der Kunst kann ich wahrhaft spinnen, in der Wissenschaft geht das nicht.“ Aus beiden Perspektiven kann sie erforschen, was Pilze tun und wofür sie stehen – „mir purzeln die Fragen entgehen, das ist großartig!“ Und sie träumt davon, ihren Kunstwerken einen Rahmen zu geben, der ihrer würdig ist – eine Ausstellung, in denen Raum und Licht die ganze Vielfalt und Charaktere der Pilzskulpturen erstrahlen lassen.

Mehr über die Arbeit von V.meer und über Kunst und Biotechnologie allgemein gibt es bei der Frühjahrstagung der Biotechnologen am 25. und 26. Februar 2019 – außerdem den Hochschullehrer-Nachwuchspreis, den Preis des Zukunftsforums und jede Menge Zeit fürs Networking – melden Sie sich jetzt an!

Read Full Post »

Older Posts »