Feeds:
Beiträge
Kommentare

Archive for the ‘Projekte und Förderprogramme’ Category

Können sich Anlagenplaner und Betreiber dank Digitalisierung bald gemütlich zurücklehnen und der Steuerung im digitalen Zwilling die Arbeit überlassen? Nein, denn es bleibt noch viel zu tun. Das zeigt unter anderem der Zwischenstand des Projektes ENPRO. Mit dem Betreuer Linus Schulz haben wir über neue Erkenntnisse und den Ausblick auf Phase 2 gesprochen.

dechema_2016_004DECHEMA: Die erste Projektphase ist beendet, die zweite Phase hat begonnen. Wenn Sie jetzt eine Zwischenbilanz ziehen müssten, was hat Sie am meisten überrascht?

Linus Schulz, ENPRO-Projekt: Aus einer naiven Sicht hat es mich überrascht, wie schwierig das Zusammenspiel von automatisierten Komponenten ist. Auch die unterschiedlichen Moduldefinitionen, das war überraschend, wie schwierig das ist. Wir haben das Projekt „Modularisierung“; da kam, auch erstaunlich für die ganzen Projektbeteiligten, die Frage auf „Wie definiere ich eigentlich ein Modul?“.

DECHEMA: Welche Konsequenzen hatte das für die Diskussionen im Projekt?

Schulz: Wir haben ganz lange über diese Frage diskutieren müssen, weil die einzelnen Charaktere in der Thematik das jeweils anders gesehen haben. Ein Großanlagenbauer sieht das anders als ein Apparatehersteller. Für viele Firmen ist es ein Modul, wenn die sagen, wir setzen etwas in einen 20-Fuß-Container. Das ist aber ein völlig individualisierter 20-Fuß-Container. Für jemanden, der sich mit Automatisierung beschäftigt, ist das eine individualisierte Kleinanlage.

DECHEMA: Wie weit ist denn die Standardisierung in dem Bereich gekommen?

Schulz: Bei der Automatisierungstechnik sind die ersten Weißdrucke an VDI-Richtlinien raus, bei den verfahrenstechnischen Schnittstellen und Auslegungen soll Ende des Jahres der erste Gründruck herauskommen. Wir befinden uns derzeit aktiv in der Standardisierung. Beim MTP, also beim Modul Type Package im NAMUR-Projekt, gibt es eine erste standardisierte Beschreibung eines Moduls. Das ist noch nicht in der Anwendung, aber die ersten Firmen bauen es mittlerweile in ihre Software ein.

 

brunch.png

Mehr zu ENPRO und zur Digitalisierung in der Anlagen- und Prozesstechnik erfahren Sie beim Jahrestreffen – melden Sie sich jetzt an unter www.dechema.de/paat2018

 

 

DECHEMA: Gibt es in der zweiten Phase des Projekts, die jetzt läuft, etwas, bei dem Sie sagen, das finde ich besonders spannend?

Schulz: Da bin ich beim Projekt ORCA. Was ich da das Spannende finde ist, dass sie mit dem Regierungspräsidium in Darmstadt zusammenarbeiten, um die Genehmigung von modularen Anlagen zu besprechen. und auch schon zu einem sehr frühen Zeitpunkt die Genehmigungsverfahren vielleicht anzupassen. Also, dass nicht nur reine Projektarbeit getan wird, sondern dass da schon während der Projektlaufzeit auch die Regularien angeschaut und eventuell auch Lösungsvorschläge erarbeitet werden. Das ist etwas, was ich so aus ganz wenigen Forschungsprojekten kenne. Also hier ist es so, dass erkannt wurde, dass eine der großen Herausforderungen sein wird, eine modulare Anlage nicht nur technisch zu lösen, sondern auch von den Regularien her. Weil wenn die Regularien nicht stimmen, muss ich eine modulare Anlage, wenn ich sie wieder umbaue, wieder komplett neu genehmigen lassen.

DECHEMA: Wie geht es weiter bei ENPRO? Warum lohnt sich das Mitmachen?

Schulz: Wir haben Projekte, die noch nicht genehmigt, aber in der Vorbereitung sind. Da geht es zum Beispiel um Logistik, um Auswahlverfahren für Module und Apparate, um eine weitere und  bessere Datenintegration. Also es ist ein ganz großer Blumenstrauß an verschiedenen Themen, die aber alle die Idee der Prozessbeschleunigung und Energieeffizienz in sich tragen. Und es lohnt sich mitzumachen, weil die Einzelprojekte eine relativ große Freiheit haben, wie sie ihre Forschung selbst organisieren und gleichzeitig  den Mehrwert eines sehr intensiven Austauschs mit Gleichgesinnten bieten.

Sie fanden diese Nachricht spannend? Mehr aktuelle Neuigkeiten aus Chemie und Chemischer Technik oder unseren anderen Themenbereichen erhalten Sie wöchentlich im aktuellen Newsletter – abonnieren Sie ihn jetzt kostenlos und unverbindlich!

Advertisements

Read Full Post »

In der Regel werden bei Elektrolysen Flüssigkeiten wie Wasser oder in Flüssigkeiten gelöste Ionen, z.B. zu Metallen oder Chlor, umgesetzt. Was aber, wenn ein Gas elektrolytisch gespalten werden soll? Dieser Herausforderung stellen sich Wissenschaftler von Siemens im Forschungsprojekt „Rheticus“. Dabei soll mit Hilfe von Strom aus regenerativen Quellen Kohlendioxid zu Kohlenmonoxid umgesetzt werden. Bei der Entwicklung kam den Forschern der Zufall zu Hilfe, erzählt Günter Schmid, Principal Key Expert Research Scientist bei Siemens: „Kollegen von Covestro und ich habe vor einiger Zeit entdeckt, dass Sauerstoffverzehr-Kathoden aus der Chloralkalielektrolyse auch in der Lage sind, CO2 zu reduzieren. Natürlich ist einiges an Nachentwicklung notwendig, aber wir konnten in einer gemeinsamen Veröffentlichung von Evonik, Covestro und Siemens bereits eine Lebensdauer von 1200 Stunden nachweisen.“ Im Kopernikus-Satellitenprojekt Rheticus arbeiten die Unternehmen jetzt daran, diese Elektrolyse in den industriellen Maßstab zu bringen. Das gebildete CO dient dann als Grundlage für einen fermentativen Prozess, in dem Butanol und Hexanol erzeugt werden.

Der kontinuierliche Betrieb sei am Anfang die größere Herausforderung gewesen, erzählt Schmid: Die Elektrolysezelle basiert auf zwei Kreisläufen: Auf der Anodenseite wird Wasser oxidiert. An der Kathode wird CO2 zu CO reduziert. Eine der Herausforderungen: Die Löslichkeit von CO2 in Wasser. „In einer Limoflasche sind maximal 2 g CO2 pro Liter gelöst. Das ist nicht viel, Stromdichten von mehreren 100 mA pro cm² kann man damit nicht erreichen“, erklärt Schmid. „Deshalb setzt man die sogenannte Gasdiffusionselektrode ein.“ Deren Kern bildet ein Metall- oder Kunststoffgitter, in das ein Katalysator eingepresst wird. Dabei muss die Porengröße so bemessen sein, dass der Elektrolyt nicht hindurchläuft, aber Gas eindringen kann. Dass das CO2 den Wettbewerb um Elektronen gegen das umgebende Wasser gewinnt, obwohl an der Elektrodengrenzfläche die Relation 2 Gramm CO2 pro kg Wasser beträgt, liegt an der hohen Überspannung des Silbers gegenüber Wasserstoff – stimmt hier ein Parameter nicht, entsteht anstelle des CO vor allem Wasserstoff. „Wie man diese Faraday-Effizienz richtig „tuned“, haben wir im Projekt gelernt“, sagt Günter Schmid. Bei Design und Optimierung solcher Gasdiffusionselektroden sind zahlreiche Faktoren zu beachten – Leitfähigkeit, Morphologie, chemische Zusammensetzung, Porosität und Durchdringdruck, bei dem das Gas eindringt, aber nicht „durchblubbert“. Und natürlich spielen sie auch beim Scale-up eine entscheidende Rolle.

PF Electrolysis AnzeigeUm den Stromkreis zu schließen und einen kontinuierlichen Betrieb zu gewährleisten, müssen Ladungsträger zwischen Wasser und CO2 hin und her bewegt werden. „Im einfachsten Fall sollten die Protonen, die an der Anode entstehen, das Hydroxid an der Kathode neutralisierten und so hätten wir unseren Stromkreis geschlossen“, erklärt Schmid. Der Teufel liegt im Detail, denn je nachdem, welche der vorhandenen Ionen für den Ladungsausgleich sorgen, kommt es zu unerwünschten Nebenreaktionen. Über die Konzentration des Elektrolyten und die Auswahl der Membran lässt sich zwar steuern, welche Ionen zwischen den Zellen wandern. Aber die Ionen nehmen beim Durchtreten der Membran immer auch Wassermoleküle mit, und damit kommt es im Laufe des Betriebs zu Verdünnungs- und Konzentrationseffekten in den Teilzellen. Deshalb haben die Forscher ein System entwickelt, bei dem in einem externen Mischgefäß für einen Ausgleich gesorgt wird. Zudem wurde die Anode direkt auf die Membran aufgebracht, um mit einer „Zero-Gap-Anordnung“ möglichst wenig Elektrolytwiderstand zu erreichen. „Wenn das ausbalanciert ist, läuft es – auch nach 1250 Stunden war die Versuchsanordnung stabil“, erklärt Schmid.

Da es sich bei der Elektrolyse um eine Flächentechnologie handelt, steht dann als nächster Schritt für die Skalierung ins Volumen die Verschaltung mehrerer Zellen zu einem Stack an. Durch das Hintereinanderschalten der Einzelzellen mit 3-5 Volt Betriebsspannung wird der Elektrolyseur auch kompatibel zu den deutlich höheren Spannungen, die das Netz bereitstellt.

Im Rahmen des Projektes ist es gelungen, ohne Akkumulation von Nebenprodukten Stromdichten von 300 mA/cm² zu erreichen. „Damit hatten wir eine Schwelle überschritten, wo man sich sagt: Wir sollten weitermachen“, sagt Schmid. Aktuell geht es nun darum, die Plattengrößen auf 300 cm² zu erhöhen; der Wunsch der Wissenschaftler wäre eine 3 m²-Elektrode wie in der Chloralkalielektrolyse, in der allerdings 120 Jahre Entwicklung stecken. Doch Günter Schmid ist optimistisch; im Dezember 2019 soll die erste Anlage in den Testbetrieb gehen und aus erneuerbarer Energie Chemikalien erzeugen.

Wenn Sie mehr über neue Technologien und Anwendungen für Elektrolyse hören wollen, registrieren Sie sich jetzt für das PRAXISforum „Electrolysis in Industry“ am 22. und 23. November 2018 in Frankfurt.

Read Full Post »

Dass Forschungsprojekte erfolgreich sind, ist glücklicherweise keine Seltenheit. Dass sie  allerdings so erfolgreich sind, dass zwei Großunternehmen nach einem Projektjahr den Bau einer Kleinanlage ins Auge fassen, ist dann doch eher selten. Grund genug, einmal nachzufragen – bei Dr. Günter Schmid, Principal Key Expert Research Scientist bei Siemens:

GSchmidHerr Schmid, herzlichen Glückwunsch an Sie und Ihren Projektpartner Dr. Thomas Haas von Evonik – Sie sind quasi von Ihrem Erfolg überrollt worden.

Ja, das kann man sagen. Unser Projekt ist im ersten Jahr so erfolgreich gelaufen, dass wir uns entschieden haben, den nächsten Schritt zu gehen und in Richtung einer vollständig automatisierten Kleinanlage zu skalieren. Derzeit planen wir, im Dezember 2019 unsere Einzelprozesse zu verkoppeln.

Worum geht es im Projekt von Siemens und Evonik genau?

Unser Projekt heißt Rheticus und ist ein Satellitenprojekt der Kopernikus-Initiative. Wir wollen aus erneuerbaren Rohstoffen Spezialchemikalien herstellen. Die „Rohstoffe“ sind Elektronen aus erneuerbarer Energie, CO2 und Wasser. Die Energie bringen wir über eine Elektrolyse in das System: Wir elektrolysieren CO2 zu Kohlenmonoxid, Wasser zu Wasserstoff, und das verfüttern wir dann an die Bakterien.

Warum setzen Sie ausgerechnet auf ein biotechnologisches Verfahren?

Wir arbeiten mit anaeroben Bakterien, wie sie beispielsweise an „Black Smokern“ in der Tiefsee vorkommen. Wir benutzen zwei Bakterienstämme, bei denen einer der Stämme  ein Gasgemisch aus Wasserstoff, Kohlenmonoxid und Kohlendioxid zu Acetat und Ethanol umsetzt. Ein zweiter Stamm produziert aus diesen Intermediaten anschließend Butanol und Hexanol.

Die Biotechnologie bietet zwei Vorteile: Sie arbeitet sehr selektiv und effizient in der CO2 Nutzung, und sie lässt sich dezentral einsetzen, auch unabhängig von einem integrierten Chemiestandort. Wir können solche Anlagen dort aufbauen, wo auch die erneuerbaren Energien anfallen.

 

 

Wie sind Sie bei der Auswahl der Zielprodukte vorgegangen?

An dieser Frage haben wir ziemlich lang gearbeitet. Bei fossil basierten Produkten bezahlt man nur für Prozess, Transport und Förderung, aber nicht für den Energieinhalt. Bei Produkten auf Basis erneuerbarer Energie ist der Energieinhalt einer der größten Kostentreiber. Wir brauchen also Produkte, bei denen der Anteil der Energie an den Kosten möglichst gering ist, und das ist bei der Spezialchemie der Fall. Außerdem können wir mit kleineren Anlagen starten, bevor wir dann in den Bereich der Bulkchemikalien oder der Kraftstoffe eintreten.

 

Wie sauber muss das CO2 sein, das Sie einsetzen?

Die Ansprüche an das CO2 sind vergleichsweise gering. So stören viele Schwefelverbindungen oder Sauerstoff den Prozess nicht, nur Metalle, die als Katalysatorgifte wirken, müssen vorab aus dem Rauchgas entfernt werden. Wir gehen aber trotzdem davon aus, dass wir das CO2 vorher aufreinigen, denn das können wir leicht aus Luft abtrennen, während Kohlenmonoxid sehr schwer von Stickstoff und Sauerstoff zu befreien ist.

 Wo liegt die größte technische Hürde?

Im Moment sind wir in der Fermentation im 2-Liter-Maßstab und wir wollen in den Kubikmeter-Maßstab kommen. Wir müssen also sowohl die Elektrolyse als auch die Bioreaktoren scalieren. Bisher hat noch niemand einen Gas-/Gas-Elektrolyseur gebaut, schon gar nicht in diesen Größenordnungen.

Inwieweit ist die Technologie auch dazu geeignet, Schwankungen in der Stromerzeugung abzupuffern?

Die Technologie ist sehr flexibel. Wir haben Betriebsmodi entwickelt, bei denen man die Leistung rauf- und runterfahren kann. Die untere Grenze bildet ein Standby-Modus; das ist auch für die Fermentation anwendbar.

Was ist Ihr nächstes Ziel?

Bis jetzt entwickeln wir die Einzelkomponenten aus dem Labormaßstab von 10 cm² auf 300 cm² – das ist ein Riesensprung. Für die weitere Skalierung bauen wir dann mehrere Zellen – ein Stack aus etwa zehn Zellen wäre ein Zwischenschritt, mit dem man erst einmal alles demonstrieren kann, was man so braucht. Wir haben im Rahmen von Kopernikus einen kontinuierlichen Betriebsmodus entwickelt, und in 2019 wird die erste echte Kopplung mit allen Anlagen stattfinden. Ziel ist eine automatisierte Kleinanlage, die eine kleine zweistellige Tonnage pro Jahr produzieren kann. Das heißt, wir sprechen von Elektrolyseuren im Kilowattbereich und Fermentern von im Bereich von 1 m³ Größe.

Wer mehr zu den vielen Einsatzmöglichkeiten der Elektrolyse und den aktuellesten technischen Entwicklungen erfahren und sich mit anderen Experten austauschen möchte, hat dazu Gelegenheit beim PRAXISforum Electrolysis in Industry am 22. und 23. November 2018 in Frankfurt – jetzt Programm ansehen und anmelden!

Read Full Post »

Forum Startup ChemieAm 12.09.2018 diskutierten Vertreter aus Politik, Industrie und Wissenschaft sowie Kapitalgeber und Gründer im Rahmen der Eröffnung des „Forum Startup Chemie – FSC“ in Berlin, wie man die Gründungskultur in Deutschlands Chemie-Sektor stärken kann.

Wichtig sei, dass die exzellenten Forschungsergebnisse deutscher Universitäten verstärkt auch in Unternehmensgründungen umgesetzt werden. Neben der Sensibilisierung von Forschern für das Thema „Gründen“ würden z.B. auch eine verstärkte Bereitstellung entsprechender Labore, der Ausbau Chemie-spezifischer Fördermaßnahmen für bestimmte Phasen, steuerliche Anreize oder der Abbau bürokratischer Hürden wichtige Anreize zur Gründung setzen.

Das FSC wird sich dieser Herausforderungen annehmen, indem es bereits vorhandene Maßnahmen und Aktivitäten methodisch aufeinander abstimmt und, wo nötig, neue etabliert. Es hat sich zum Ziel gesetzt, gleichermaßen Anlaufstelle für Gründungswillige, Gründer, Investoren und für die chemische Industrie zu sein, indem es entsprechende Stakeholder-Netzwerke und Unterstützungsmaßnahmen anbietet. Darüber hinaus möchte die Initiative die politischen und rechtlichen Rahmenbedingungen für Startups verbessern und entsprechende Fördermaßnahmen initiieren.

Initiatoren der Plattform sind der Bundesverband Deutsche Startups, das Business Angels Netzwerk Deutschland, die DECHEMA, die Gesellschaft Deutscher Chemiker (GDCh), der Verband der Chemischen Industrie (VCI) und der High-Tech Gründerfonds (HTGF). Nähere Informationen finden Sie hier: http://forum-startup-chemie.de/

 

Read Full Post »

Es klingt fast zu schön, um wahr zu sein: Die europäische Union hat angekündigt, 400 Millionen Euro an Krediten bereitzustellen. Unter anderem sollen mit dem Geld Projekte in der Bioökonomie in Schwung gebracht werden, auch in der Forschung. In Brüssel hofft man, damit Investitionen von knapp einer Milliarde Euro anzuschieben.

Das Ganze soll über eine Bank laufen, die kaum jemand kennt, aber in Wirklichkeit eines der größten Geldhäuser der Welt ist: die Europäische Investitionsbank. Sie wird die Kredite über den Europäischen Fonds für strategische Investitionen (EFSI) abwickeln. Hört sich hervorragend an – doch wie sind die bisherigen Erfahrungen mit diesem Instrument?

„Keinen Beweis für Mehrwert“

piggy-bank-3131032_1280.jpgNachfrage bei einem, der es wissen muss: der CSU-Europaabgeordnete Markus Ferber ist unter anderem erster stellvertretender Vorsitzender des Ausschusses für Wirtschaft und Währung im EU-Parlament. Ein Finanzfachmann also und einer, der die Arbeit des EFSI seit Jahren beobachtet. „Ich habe keinen Zweifel daran, dass man mit dem EFSI Projekte finanzieren kann. Was die Europäische Investitionsbank und die Europäische Kommission aber bislang nicht zeigen konnten ist, ob es sich dabei tatsächlich um zusätzliche Projekte handelt, die andernfalls nicht finanziert worden wären“, schreibt uns Ferber in einer E-Mail. Anders ausgedrückt: Bisher floss das Geld oft in Dinge, die ohnehin geplant waren und bei denen die Finanzierung dann nur eine Art EFSI -Siegel bekam.

Ganz ähnlich äußert sich der Brüsseler Thinktank Bruegel, der schon ein Jahr nach dem Start des Fonds zu dem Ergebnis kam: Wirklich viel Neues haben die Millionen aus Brüssel nicht gebracht.

Neue Regeln geben Hoffnung auf Push

Dennoch – vielleicht kommen die Millionen für die Bioökonomie jetzt im richtigen Moment. Ende vergangenen Jahres hat das Europaparlament für eine Reform des EFSI gestimmt. Viele Probleme der ursprünglichen Geldverteilung sollten beseitigt werden, die Arbeit des Fonds sollte innovativer werden. „Die bekannten Umsetzungsprobleme werden durch die nun beschlossenen Neujustierungen beseitigt“, hofft der Vorsitzende der Sozialdemokraten im EU-Parlament, Udo Bullmann.

Ein Selbstläufer waren die Brüsseler Investitionen bisher jedenfalls nicht.- man wird also abwarten müssen, ob jetzt tatsächlich ein Bioökonomie-Boom in Europa angeschoben wird.

Sie finden diese Nachricht interessant? Dies und mehr finden Sie zukünftig im DECHEMA-Themennewsletter Biotechnologie und Bioökonomie – wöchentlich, kompakt und gebündelt. Melden Sie sich hier an http://dechema.de/nl_bio.html

Und wenn Bioökonomie nicht Ihr Thema ist – unsere Newsletter gibt es auch für Chemische Technik und Chemie, Energie/Rohstoffe/Wasser und Pharma/Medizintechnik – abonnieren Sie sie hier kostenlos und unverbindlich.

Read Full Post »

BioLinX logo cmyk
Update | April 2018
Dear reader,

Through this BioLinX Update we offer those who are not aware yet, the opportunity to still participate in one of our 4 upcoming events. These events are either hosted by BioLinX, or we partner up in organizing them. Join in now! Through, among other things, these events BioLinX has already contributed to the success of well over 500 unique projects and/or companies. 

UPCOMING EVENTS

10-11 April | Finance Academy | Milan, Italy

The 3rd edition of our succesful ‘Finance Academy & Brokerage’ format. After the Netherlands and Sweden, this event now visits Milan. What to expect:

On April 10th , companies attend our free coaching session on ‘VC-pitching’. Experienced coaches from relevant industry areas  prepare presenters for their participation in the Finance Academy the following day.

April 11th, participants present their business projects and network to the audience of experts in innovation, Business Angels, Venture Capitalists, Corporate and Institutional investors and peers and are reviewed by the Expert Jury. Still a few seats left, but please note: registration for the Finance Academy closes on April 6th!!

11 April | Brokerage Event in connection with Finance Academy | Milan, Italy

Federchimica – the Italian Federation of Chemical Industries  and its relevant sectoral associations host BioLinX’s Brokerage event focusing on promising bioeconomy value chains and innovative initiatives exploiting industrial biotechnologies, bio-sourcing raw materials and/or bio-transforming products. Focus on value chains such as cosmetics, detergents and cleaning products, industrial biotech and foodingredients.

For programme and registration: http://www.biolinx-project.eu/event/circular-bioeconomy-workshop-italy

12 April | Webinar on EU’s LIFE Programme| online

BioLInX’ experts inform you on if and how your biobased and environmental-friendly technology, process or product can benefit from EU’s LIFE funding programme. In recent years, the programme has supported a variety of bio-based projects with a funding of up to 60%.

Thursday 12 April 2018, 10:30 – 11:30 hrs CET

During this webinar you will learn more about
·         the LIFE programme
·         the main criteria
·         eligible activities
·         the preparation of a 10-page concept note for the upcoming deadline on 12 June 2018. 

Registration is free of charge. You can register here: http://online.cme24.de/index.php?id=1076

25-26 April | Online Matchmaking

BioLinX Online Brokerage is an innovation exchange and a matchmaking platform serving SMEs, academia and large companies. If you are looking for new business partners, exciting inventions, new products and services or investments, BioLinX will connect you with right people from the European bio-economy community.

Why should you participate? You will save time and costs, avoid unnecessary business trips, meet  experts from all over Europe and make it quick and easy to pinpoint offers and requests.

Register for participation on biolinx.talkb2b.net/members/register

16 May | Pitching & Networking Event| Bratislava, Slovakia

Wondering what the umbrella term bioeconomy means and how it might be  relevant to you? Interested in how innovative ideas in the agrifood sector can take off, reach scale and receive EU funding? Join us at ther pitching and networking event in Bratislava on the 16th May 2018, and find out more about it with leading technology and funding experts.

During the event, you can pitch your company and expertise to bio-experts and benefit from the networking opportunity. The participant delivering the best pitch (chosen by a jury of bio experts) will receive a free EU grant scan service from BioLinX partner, PNO Consultants.

We look forward to meeting you during one of these four events!

 BioLinX?

Would you like more details on what we have to offer and to whom in particular we offer it?

Read our brochure or visit our website!

Kind regards on behalf of the BioLinX Consortium,

Dennis van der Pas (coordinator BioLinX)
d.vanderpas@rewin.nl

 

BioLinX Project provides links to commercialize your innovative idea

www.BioLinX-project.eu

     @BioLinXproject

BioLinX is a H2020 project, with the goal to support H2020 and FP7 projects in commercializing their innovative ideas and to connect them to new regional networks and markets. This project has received funding from the European Union’s Horizon 2020 research and innovationprogramme under grant agreement No 65269.                                                                                                         

Read Full Post »

Neue Studie stellt die Flexibilitätsoptionen in der Grundstoffindustrie vor

Slider FlexibilitätsoptionenDie Prozesse der Grundstoffindustrie sind verantwortlich für einen Großteil des industriellen Energie- und Strombedarfs in Deutschland. Welche technischen Möglichkeiten bieten sich in diesen Prozessen, um auf Flexibilitätsanforderungen des Stromsystems zu reagieren?

Das vom BMBF geförderte Kopernikus-Projekt SynErgie untersucht die Flexibilität von Industrieprozessen. Aus dem Projekt heraus wurde nun eine umfassende Studie zu den Flexibilitätsoptionen in den Prozessen der Grundstoffindustrie veröffentlicht.

Übergreifende Ergebnisse:

  • Die untersuchten Prozesse können prinzipiell für kurze Zeiträume (15 min) positive Flexibilität und eingeschränkt negative Flexibilität anbieten.
  • Für mittlere und lange Zeiträume (Stunden bis Tage) ist positive Flexibilität nur in wenigen Prozessen möglich, da dies mit einem Produktionsausfall einhergeht.
  • Priorität vor einem Anbieten von Flexibilität hat die Belieferung der Kunden mit den Produkten.
  • Flexibilität und Effizienz verhalten sich gegenläufig, d.h. eine erhöhte Flexibilität senkt die Effizienz des Prozesses.
  • Veränderungen der Betriebsweise führen in der Regel zu Veränderungen der Produktqualität.
  • Die aktuellen Regeln des Stromsystems begünstigen einen kontinuierlich (nicht-flexiblen) Betrieb der Anlagen.

In enger Zusammenarbeit haben die Forschungseinrichtungen der Branchen und die akademischen Partner eine Methodik entwickelt, um konsistent Potenziale, Perspektiven und Hemmnisse der untersuchten industriellen Prozesse bei typischen Anforderungsprofilen zu analysieren.

Die untersuchten Prozesse wurden nach ihrem elektrischen Energiebedarf und der Bedeutung in ihrer jeweiligen Branche ausgewählt:

  • Stahl: Elektrostahlherstellung (Elektrolichtbogenofen)
  • Glas: Behälterglasherstellung (Elektrische Zusatzheizung)
  • Zement: Roh- und Zementmahlung (Roh- und Zementmühlen)
  • Chemie: Chlor-Herstellung (Chlor-Alkali Elektrolyse)
  • Feuerfest: Herstellung von Schmelzkorund (Rohstoffschmelzanlage)

Für diese Prozesse werden die technischen Potenziale und die zukünftigen Perspektiven ausgewiesen und auf Deutschland hochgerechnet. Des Weiteren werden die Hemmnisse, die einer Ausnutzung der Potenziale im Wege stehen für die einzelnen Prozesse dargestellt und im Kontext der Rahmen¬bedingungen der Grundstoffindustrie eingeordnet. Durch die enge Einbindung der branchen¬spezi¬fischen Expertennetzwerke wurden die Ergebnisse innerhalb der Branchen diskutiert und validiert.

Die Studie kann auf den Internetseiten der beteiligten Partner und des SynErgie-Projektes kostenfrei heruntergeladen werden: dechema.de/Flexibilitaetsoptionen

Read Full Post »

Older Posts »