Feeds:
Beiträge
Kommentare

Archive for the ‘Energie’ Category

Dass Forschungsprojekte erfolgreich sind, ist glücklicherweise keine Seltenheit. Dass sie  allerdings so erfolgreich sind, dass zwei Großunternehmen nach einem Projektjahr den Bau einer Kleinanlage ins Auge fassen, ist dann doch eher selten. Grund genug, einmal nachzufragen – bei Dr. Günter Schmid, Principal Key Expert Research Scientist bei Siemens:

GSchmidHerr Schmid, herzlichen Glückwunsch an Sie und Ihren Projektpartner Dr. Thomas Haas von Evonik – Sie sind quasi von Ihrem Erfolg überrollt worden.

Ja, das kann man sagen. Unser Projekt ist im ersten Jahr so erfolgreich gelaufen, dass wir uns entschieden haben, den nächsten Schritt zu gehen und in Richtung einer vollständig automatisierten Kleinanlage zu skalieren. Derzeit planen wir, im Dezember 2019 unsere Einzelprozesse zu verkoppeln.

Worum geht es im Projekt von Siemens und Evonik genau?

Unser Projekt heißt Rheticus und ist ein Satellitenprojekt der Kopernikus-Initiative. Wir wollen aus erneuerbaren Rohstoffen Spezialchemikalien herstellen. Die „Rohstoffe“ sind Elektronen aus erneuerbarer Energie, CO2 und Wasser. Die Energie bringen wir über eine Elektrolyse in das System: Wir elektrolysieren CO2 zu Kohlenmonoxid, Wasser zu Wasserstoff, und das verfüttern wir dann an die Bakterien.

Warum setzen Sie ausgerechnet auf ein biotechnologisches Verfahren?

Wir arbeiten mit anaeroben Bakterien, wie sie beispielsweise an „Black Smokern“ in der Tiefsee vorkommen. Wir benutzen zwei Bakterienstämme, bei denen einer der Stämme  ein Gasgemisch aus Wasserstoff, Kohlenmonoxid und Kohlendioxid zu Acetat und Ethanol umsetzt. Ein zweiter Stamm produziert aus diesen Intermediaten anschließend Butanol und Hexanol.

Die Biotechnologie bietet zwei Vorteile: Sie arbeitet sehr selektiv und effizient in der CO2 Nutzung, und sie lässt sich dezentral einsetzen, auch unabhängig von einem integrierten Chemiestandort. Wir können solche Anlagen dort aufbauen, wo auch die erneuerbaren Energien anfallen.

 

 

Wie sind Sie bei der Auswahl der Zielprodukte vorgegangen?

An dieser Frage haben wir ziemlich lang gearbeitet. Bei fossil basierten Produkten bezahlt man nur für Prozess, Transport und Förderung, aber nicht für den Energieinhalt. Bei Produkten auf Basis erneuerbarer Energie ist der Energieinhalt einer der größten Kostentreiber. Wir brauchen also Produkte, bei denen der Anteil der Energie an den Kosten möglichst gering ist, und das ist bei der Spezialchemie der Fall. Außerdem können wir mit kleineren Anlagen starten, bevor wir dann in den Bereich der Bulkchemikalien oder der Kraftstoffe eintreten.

 

Wie sauber muss das CO2 sein, das Sie einsetzen?

Die Ansprüche an das CO2 sind vergleichsweise gering. So stören viele Schwefelverbindungen oder Sauerstoff den Prozess nicht, nur Metalle, die als Katalysatorgifte wirken, müssen vorab aus dem Rauchgas entfernt werden. Wir gehen aber trotzdem davon aus, dass wir das CO2 vorher aufreinigen, denn das können wir leicht aus Luft abtrennen, während Kohlenmonoxid sehr schwer von Stickstoff und Sauerstoff zu befreien ist.

 Wo liegt die größte technische Hürde?

Im Moment sind wir in der Fermentation im 2-Liter-Maßstab und wir wollen in den Kubikmeter-Maßstab kommen. Wir müssen also sowohl die Elektrolyse als auch die Bioreaktoren scalieren. Bisher hat noch niemand einen Gas-/Gas-Elektrolyseur gebaut, schon gar nicht in diesen Größenordnungen.

Inwieweit ist die Technologie auch dazu geeignet, Schwankungen in der Stromerzeugung abzupuffern?

Die Technologie ist sehr flexibel. Wir haben Betriebsmodi entwickelt, bei denen man die Leistung rauf- und runterfahren kann. Die untere Grenze bildet ein Standby-Modus; das ist auch für die Fermentation anwendbar.

Was ist Ihr nächstes Ziel?

Bis jetzt entwickeln wir die Einzelkomponenten aus dem Labormaßstab von 10 cm² auf 300 cm² – das ist ein Riesensprung. Für die weitere Skalierung bauen wir dann mehrere Zellen – ein Stack aus etwa zehn Zellen wäre ein Zwischenschritt, mit dem man erst einmal alles demonstrieren kann, was man so braucht. Wir haben im Rahmen von Kopernikus einen kontinuierlichen Betriebsmodus entwickelt, und in 2019 wird die erste echte Kopplung mit allen Anlagen stattfinden. Ziel ist eine automatisierte Kleinanlage, die eine kleine zweistellige Tonnage pro Jahr produzieren kann. Das heißt, wir sprechen von Elektrolyseuren im Kilowattbereich und Fermentern von im Bereich von 1 m³ Größe.

Wer mehr zu den vielen Einsatzmöglichkeiten der Elektrolyse und den aktuellesten technischen Entwicklungen erfahren und sich mit anderen Experten austauschen möchte, hat dazu Gelegenheit beim PRAXISforum Electrolysis in Industry am 22. und 23. November 2018 in Frankfurt – jetzt Programm ansehen und anmelden!

Advertisements

Read Full Post »

Durch die Energiewende und den steigenden Anteil an erneuerbaren Energien mit volatiler Verfügbarkeit gewinnt die Kopplung von Energie- zu Chemiesektor neuen Schwung – und die Elektrolyse an Bedeutung. Denn die Elektrolyse ist der Schlüssel bei vielen hochaktuellen Prozessen und die entscheidende Schnittstelle zwischen Strom- und Chemiesektor.

Unter dem Stichwort „Sektorkopplung“ geht es dabei darum, Strom für die Herstellung von Kraftstoffen oder Chemikalien zu nutzen. In fast allen Verfahren spielt die Elektrolyse eine Schlüsselrolle. Dabei bildet die Wasserelektrolyse einen Schwerpunkt. Der durch die Aufspaltung von Wasser gewonnene Wasserstoff kann entweder als Energieträger beispielsweise für Brennstoffzellen eingesetzt oder in die Produktion von Chemikalien eingespeist werden. Dementsprechend vielfältig ist die Zahl der Projekte: Fast täglich wird über neue Bauvorhaben berichtet, von der lokalen Wasserstoff-KWK-Anlage bis zu Megaprojekten wie die geplanten 10- und 20-MW-Projekte, die AkzoNobel bzw. Shell Anfang 2018 angekündigt haben. Gleichzeitig schreitet die Entwicklung der Elektrolysezellen voran: Neue Elektrodenmaterialien oder Entwicklungen wie die PEM-Elektrolysezellen sorgen dafür, dass die Verfahren immer effizienter und je nach weiterer Nutzung des Wasserstoffs auch wirtschaftlich wettbewerbsfähig werden. In einem Bericht von April 2018 an das BMWi weisen Wuppertal Institut und Fraunhofer ISI jedoch darauf hin, dass die verfügbaren Elektrolyseure keine Serienprodukte sind und ein notwendiger Scale-Up schnell erfolgen muss. Daraus ergäben sich auch Chancen für den Exportmarkt.

PF Electrolysis Anzeige

Und längst richtet sich das Augenmerk nicht mehr nur auf die Wasserstoffproduktion. Auch die Co-Elektrolyse von Wasser und Kohlendioxid zu Synthesegas wird derzeit genauer untersucht. Im Forschungsprojekt Rhetikus streben Siemens und Evonik ein Verfahren zur Umwandlung von Kohlendioxid zu Butanol und Hexanol mit Hilfe von regenerativem Strom und Mikroorganismen an. Siemens liefert die Elektrolysetechnik und entwickelt dabei den ersten Gas-Gas-Elektrolyseur im industriellen Maßstab.

Auch, wenn dabei die Erzeugung werthaltiger Chemikalien im Mittelpunkt steht, bringt das Verfahren noch einen zweiten Aspekt mit, der es für die Kopplung an erneuerbare Energieträger besonders interessant macht: Es lässt sich innerhalb eines gewissen Rahmens hoch- und runterregeln und könnte damit je nach Stromangebot mehr oder weniger Energie pro Zeiteinheit nutzen.

Das gilt nur in sehr geringem Umfang für den Klassiker unter den Elektrolyseverfahren, die Chlor-Alkali-Elektrolyse. Denn das gebildete Chlor ist der Ausgangspunkt für viele weitere Chemikalien, und die Produktionsmengen können nicht ohne weiteres heruntergefahren werden. Doch selbst in diesem vermeintlich lang ausgereiften Prozess verbergen sich noch Innovationspotenziale: So konnte durch den Einsatz von Sauerstoffverzehrkathoden der Energieverbrauch bei Covestro für die Chlorherstellung um bis zu 30 % gesenkt werden.

Welche Anwendungen in der Elektrolyse aktuell auf der Tagesordnung stehen und wie sich ihre Potenziale noch besser nutzen lassen, diskutieren Anwender und Anbieter beim PRAXISforum Electrolysis in Industry am 22. und 23. November 2018 im DECHEMA-Haus, Frankfurt. Die Anmeldung für Aussteller und Teilnehmer ist geöffnet; mehr unter http://www.dechema.de/Electrolysis

 

 

Read Full Post »

Neue Studie stellt die Flexibilitätsoptionen in der Grundstoffindustrie vor

Slider FlexibilitätsoptionenDie Prozesse der Grundstoffindustrie sind verantwortlich für einen Großteil des industriellen Energie- und Strombedarfs in Deutschland. Welche technischen Möglichkeiten bieten sich in diesen Prozessen, um auf Flexibilitätsanforderungen des Stromsystems zu reagieren?

Das vom BMBF geförderte Kopernikus-Projekt SynErgie untersucht die Flexibilität von Industrieprozessen. Aus dem Projekt heraus wurde nun eine umfassende Studie zu den Flexibilitätsoptionen in den Prozessen der Grundstoffindustrie veröffentlicht.

Übergreifende Ergebnisse:

  • Die untersuchten Prozesse können prinzipiell für kurze Zeiträume (15 min) positive Flexibilität und eingeschränkt negative Flexibilität anbieten.
  • Für mittlere und lange Zeiträume (Stunden bis Tage) ist positive Flexibilität nur in wenigen Prozessen möglich, da dies mit einem Produktionsausfall einhergeht.
  • Priorität vor einem Anbieten von Flexibilität hat die Belieferung der Kunden mit den Produkten.
  • Flexibilität und Effizienz verhalten sich gegenläufig, d.h. eine erhöhte Flexibilität senkt die Effizienz des Prozesses.
  • Veränderungen der Betriebsweise führen in der Regel zu Veränderungen der Produktqualität.
  • Die aktuellen Regeln des Stromsystems begünstigen einen kontinuierlich (nicht-flexiblen) Betrieb der Anlagen.

In enger Zusammenarbeit haben die Forschungseinrichtungen der Branchen und die akademischen Partner eine Methodik entwickelt, um konsistent Potenziale, Perspektiven und Hemmnisse der untersuchten industriellen Prozesse bei typischen Anforderungsprofilen zu analysieren.

Die untersuchten Prozesse wurden nach ihrem elektrischen Energiebedarf und der Bedeutung in ihrer jeweiligen Branche ausgewählt:

  • Stahl: Elektrostahlherstellung (Elektrolichtbogenofen)
  • Glas: Behälterglasherstellung (Elektrische Zusatzheizung)
  • Zement: Roh- und Zementmahlung (Roh- und Zementmühlen)
  • Chemie: Chlor-Herstellung (Chlor-Alkali Elektrolyse)
  • Feuerfest: Herstellung von Schmelzkorund (Rohstoffschmelzanlage)

Für diese Prozesse werden die technischen Potenziale und die zukünftigen Perspektiven ausgewiesen und auf Deutschland hochgerechnet. Des Weiteren werden die Hemmnisse, die einer Ausnutzung der Potenziale im Wege stehen für die einzelnen Prozesse dargestellt und im Kontext der Rahmen¬bedingungen der Grundstoffindustrie eingeordnet. Durch die enge Einbindung der branchen¬spezi¬fischen Expertennetzwerke wurden die Ergebnisse innerhalb der Branchen diskutiert und validiert.

Die Studie kann auf den Internetseiten der beteiligten Partner und des SynErgie-Projektes kostenfrei heruntergeladen werden: dechema.de/Flexibilitaetsoptionen

Read Full Post »

Print„New records in renewable electricity generation“ – „Wind and solar yesterday covered lion’s share of energy demand” – media and the internet are not short of success messages on renewable energy generation. Peaks in energy supply are so high that up to 5 billion kWh of renewable electricity have to be cut off per year because the grid cannot accommodate it.

At the same time, Germany struggles with meeting its climate goals due to the ongoing emissions from coal power plants that are needed in order to ensure the energy supply on windless nights.

The existing storage capacities such as pumping plants and reservoirs are limited and in Germany almost exhausted. Battery technology is being pushed, but scalability is restricted and the consumer uptake of electric mobility is slow. Moreover, in order to level out summer/winter fluctuation in renewable energy generation, long-term storage is required.

Therefore, researchers and industry are looking for alternatives. “Power-to-X” is one of the hot topics of the day – a vision moving towards application. The basic idea: Unused electricity is used to produce chemicals that can be stored without significant loss and can either be reconverted to energy or used as a basic resource for the chemical industry. This is more than just a technological innovation – it will change businesses and value chains fundamentally, as Jonas Aichinger, Mainzer Stadtwerke AG, explains: „Convergence of previously separated sectors like electricity, gas, mobility and industry link these markets and can be realized through Power-to-X technologies“

The “traditional” conversion path of electricity to energy-rich substances is the electrolysis of water. Hydrogen has multiple potential uses, making it a flexible and versatile energy store, especially as it can – at least to a certain limit – be coupled with existing gas infrastructures. So far, however, the technology is not competitive. Projects such as HYPOS – Hydrogen Power Storage & Solutions East Germany e.V. are taking up the challenge to find the most cost-efficient pathway and create a showcase by combining technological innovations and existing networks and infrastructure.

“The energy conversion will only succeed with hydrogen”, says Dr. Bernd Pitschak, Hydrogenics GmbH – and hydrogen will play a key role in the ongoing transformation of the energy system. But current “Power-to-X” concepts take the approach one step further: They use renewable electricity to produce not only hydrogen, but by drawing on CO2 as an additional readily available resource, they synthesize methanol or more complex molecules such as synthetic fuels. This could provide the opportunity to kill two birds with one stone: By producing carbon-neutral fuels, greenhouse gas emissions from the mobility sector could be drastically reduced long before the onset of the era of electric mobility.

Even if all passenger cars should one day rely on batteries, there still remains the challenge of heavy-duty vehicles and aviation. Says Benedikt Stefánsson, Carbon Recycling International in Iceland: “Transport presents the most difficult challenge in decarbonization as only certain segments of urban mobility can be electrified with batteries, leaving long-distance driving, heavy goods transport, marine and aviation dependent on liquid transport fuels.“ And Patrick Schmidt, Ludwig-Bölkow-Systemtechnik GmbH, adds: “There is a real risk that any efficiency improvements in aviation will be overcompensated by aviation’s growth. For long-term greenhouse gas emission mitigation in aviation the use of sustainable carbon-neutral fuels is indispensable. […] For a robust strategy to manage energy transition in the transport sector a dual approach is required: the electrification of drivetrain/propulsion systems, and the electrification of the primary energy basis of fuels.”

What sounds so easy in theory, however, poses big technological challenges: The conversion of CO2 requires a lot of energy and/or highly sophisticated catalysts. Many chemical companies such as Covestro or BASF are putting a lot of effort in the development of these catalysts – and with success. MicroEnergy follows a different approach, using hydrogen as “feed” for methane-producing microorganisms. Methane, like hydrogen, can be fed into the existing natural gas grid. As Thomas Heller, MicrobEnergy, describes: „Renewable electricity turns into primary energy and has to be integrated into all other energy sectors in order to fulfil decarbonisation targets. This does not consequently lead to an all-electric society, but rather to a high demand of storage systems and sector coupling applications like Power-to-Methane is.“

If these technologies become successful – and experts certainly expect this to happen – an unexpected challenge might arise: So far, CO2 conversion technologies depend on punctual sources. One day, if CO2 conversion is a standard addition to any CO2 emitting plant, CO2 might actually become a scarce resource. The Swiss company Climeworks is setting forth to address this problem: They have developed a technology to capture CO2 from air and are aiming at capturing 1 % of global CO2 emissions from the air by 2025, says Dr. Jan Wurzbacher, Managing Director.

But is the success of Power to X technologies up to engineers and scientists alone? No, say experts almost unequivocally. Dr. Ralph-Uwe Dietrich, Deutsches Zentrum für Luft- und Raumfahrt e.V., warns: „Without strong political authority the market introduction of power-to-X will not start.“ And Dr. Max Peiffer, AssmannPeiffer Attorneys, adds: „The current energy legislation does not provide a proper framework for Power-to-X-systems. The legislator needs to implement changes.“ Marcus Newborough,
Development Director, ITM Power plc., points out „the urgent need to place a value on having ‘renewable gas’ in the gas grid and for policymakers to establish a framework that enables the roll out of power-to-gas systems“

Power-to-X technologies require the cooperation of different sectors. The PRAXISforum Power-to-X  brings them together. Be part of this exciting story and join the PRAXISforum Power-to-X (18-19 October 2017, Frankfurt)

Read Full Post »

RipplingerAm 11. und 12. September 2017 findet der 10. Bundesalgenstammtisch statt. Das zehnjährige Jubiläum gibt Anlass für einen Rück- und Ausblick im Interview mit Dr. Peter Ripplinger, stellvertretender Vorsitzender der DECHEMA-Fachgruppe Algenbiotechnologie und Geschäftsführer der Subitec GmbH.

 

Wie hat sich die Algenbiotechnologie in den letzten zehn Jahren entwickelt?

In den letzten zehn Jahren hat eine gewisse Skalierung stattgefunden: Raus aus dem Labor, hin zu Pilotanlagen und dort, wo schon Märkte existieren, auch in die Produktion.

Ein ganz großer Trend ging weg von der energetischen und hin zur stofflichen Nutzung. Vor zehn Jahren stand das Thema Biofuels national und international noch ganz weit oben auf der Agenda. Auch die europäische Community hat sich zuerst mit mehreren großen EU-Projekten und dem nationalen Projekt AUFWIND auf dieses Thema konzentriert. Dadurch entstanden unter anderem in Portugal und Spanien große Anlagen, und man konnte die Möglichkeiten der Skalierung für verschiedene Systeme vom geschlossenen Reaktor bis zum Open Pond austesten. Dazu hat man wichtige Aufgabenstellungen wie Medienrecycling, Rauchgasnutzung, eine Erhöhung des Automatisierungsgrades bearbeitet; man lernte in der Prozessführung dazu und ebenso beim Umgang mit Kontaminationen – alles zusammen führt dazu, dass sich die Technik enorm weiterentwickelt, und das ist wichtig für die Senkung der Produktionskosten – und damit auch für die Erschließung neuer Anwendungsfelder.

Was sind heute und in naher Zukunft die wichtigsten Märkte?

Es gibt ganz klar einen existierenden Markt im Bereich der Nahrungsergänzungsmittel, ob Astaxanthin, Omega-3-Fettsäuren oder „Ganzalgen“ – also Spirulina oder die neue ökozertifizierte Chlorella. Dieser Markt entwickelt sich sehr positiv – diese Entwicklung wird in jüngster Zeit auch – durch die Normungsaktivitäten von CEN und DINunterstützt. Es zeichnet sich zudem ab, dass durch die Überarbeitung der Novel-Food-Verordnung die Zulassung von Algen als Nahrungsergänzungsmittel erleichtert wird. Bisher war das eine hohe Hürde, denn die Firmen im Algenbereich sind meist klein; die Zulassung ist mit hohen Kosten verbunden und der mangelnde Schutz vor Nachahmern führt zu einer starken Unsicherheit.

Ein weiterer Markt, der beständig wächst und in dem sich Algen schon gut etabliert haben, ist die Aquakultur. Bisher nicht industriell genutzte Mikroalgen werden zunehmend in der Larvenaufzucht bei neuen Fischarten eingesetzt. Synthetisches Astaxanthin, das bisher in der Lachszucht für die Rotfärbung sorgt, kann nun auch aus der Mikroalge Hämatococcus pluvialis auf natürliche Weise gewonnen werden um die Märkte für Biofisch zu erschließen. Evonik und DSM haben im März 2017 ein Joint Venture zur heterotrophen Produktion von Algenöl gegründet, um das knapper werdende Fischöl in der Lachszucht zu ersetzen. Viele Algenfirmen, gerade aus dem ehemaligen Biofuel-Sektor,  arbeiten auch an der photoautotrophen Produktion von Algen als Futtermittel.

Der dritte Bereich sind Nischen im Bereich der Kosmetik und vielleicht mittelfristig auch im Pharmabereich. Die Proteinproduktion in Algen hat wegen der Glykosilierungsmuster Vorteile gegenüber tierischen Zellen; diese Arbeiten sind aber noch im Entwicklungsstadium.

Lesen Sie im zweiten Teil des Interviews, welche Perspektiven für die energetische Nutzung von Mikroalgen bestehen.

Read Full Post »

Bei der Podiumsdiskussion am DECHEMA-Tag wurden nicht nur Probleme diskutiert, sondern auch Lösungsansätze

170531_dechema_129

Prof. Dr. Robert Schlögl (MPI für chemische Energiekonversion), Dr. Werner Neumann (BUND e.V.), Dr. Jens Kanacher (innogy SE), Dr. Christoph Sievering (Covestro), Prof. Dr. Hans-Martin Henning (Fraunhofer ISE) und Dr. Georg Menzen (BMWi) diskutierten mit Prof. Dr. Kurt Wagemann über „Die deutsche Energiewende – wir schaffen das!?“

Wie gehen wir mit der Energiewende um? Das war eine zentrale Frage des DECHEMA-Tages am 31. Mai 2017. Sie betrifft nicht nur die gesamte Gesellschaft, sondern beschäftigt auch die Wissenschafts- und Technologie-Community. Jenseits der Entwicklung neuer Solarzellen oder der Standorte von Windrädern stellen sich Fragen nach der Integration der erneuerbaren Energien in die Sektoren Mobilität, Wärme und Produktion.

170531_dechema_119.jpg

Prof. Dr. Robert Schlögl (MPI für chem. Energiekonversion): „Systemische Probleme brauchen systemische Lösungen.“

Wie sind die technischen Voraussetzungen für die Energiewende? Robert Schlögl schätzt, dass die Zeitskala für ein neues Energiesystem bei etwa 20 Jahren liegen wird; fast alle Komponenten für den Transformationspfad seien vorhanden, sie müssten „nur“ noch zusammengefügt werden. Dem widersprach Georg Menzen vom BMWi. Die Bundesregierung fördert seit über 40 Jahren Energieforschung und diese Förderung sei heute um so wichtiger, denn viele der einzelnen Komponenten seien teilweise erst als Idee vorhanden.

170531_dechema_106

Dr. Christoph Sievering (Covestro Deutschland AG): „Die Flexibilität der Industrie wird in den Medien völlig überzeichnet.“

Was aber bis dahin tun? Häufig wird argumentiert, man könne dem volatileren Energieangebot durch den höheren Anteil an erneuerbaren Energien eine flexiblere Abnahme entgegensetzen und energieintensive Industrien als „Puffer“ nutzen. Dem widersprach Christoph Sievering von Covestro. Prozesse in der chemischen Industrie seien über Jahrzehnte auf Energieeffizienz getrimmt worden. Flexibilität ist eine völlig andere Aufgabenstellung. Die Potenziale für die Umsetzung werden medial überzeichnet; der notwendige lange Zeithorizont kollidiere mit den Vorstellungen der Gesellschaft, die die Energiewende zwar beschlossen, die Bedürfnisse der Industrie dabei aber wenig berücksichtigt habe. Hans-Martin Henning, Fraunhofer ISE, wies darauf hin, dass sowohl Lastverschiebung als auch Kurzzeitspeicher Grenzen haben. Elektrolyse könnte einen Ausweg bieten.

170531_dechema_113.jpg

Werner Neumann (BUND e.V.),: „Gesellschaftliche Fragen sind mindestens genauso wichtig wie technische.“

Wie weit reicht die Akzeptanz der Gesellschaft? Werner Neumann vom BUND schätzt sie
auf 90 % und sieht die Energiewende vor allem als gesellschaftliches Gemeinschaftswerk, an dem sich schon heute viele Kommunen und Bürger aktiv beteiligen. Doch der geäußerten Akzeptanz steht eine „not in my backyard“-Mentalität entgegen, die viele Projekte der Energiewende vom Windrad bis zur Stromtrasse erschwert oder blockiert. Und nicht nur für die Stromerzeugung und den Stromtransport ist gesellschaftliche Akzeptanz nötig. Denn wenn Elektrolyse oder CO2 in Verbindung mit regenerativem Strom als Grundlage für die Produktion von Kraftstoffen oder Chemikalien dienen soll, muss auch das CO2 transportiert werden. Alternativ wären evtl. Industriestandorte zu den CO2-Quellen zu verlagern. Beides ist ohne gesellschaftliche Unterstützung nicht machbar, genauso wie höhere Preise für Produkte, die unter CO2-Vermeidung erzeugt werden.

170531_dechema_103.jpg

Jens Kanacher (innogy SE),: „Um neue Business-Modelle zu ermöglichen, muss man einen Markt entstehen lassen.“

Und die erforderlichen höheren Preise sind so wahrscheinlich, wie eine weltweite CO2-Steuer bzw. teurere CO2-Zertifikate unwahrscheinlich sind. Ordnungspolitisch wäre eine CO2-Steuer nach Auffassung von Georg Menzen, BMWi, die einfachste Lösung. Die Akzeptanz dafür mag da sein, das Engagement der Bevölkerung allerdings nicht. Dabei wären Zertifikate nach Auffassung von Jens Kanacher, Innogy, zumindest geeignet, die Merit Order für Kraftwerke in die richtigen Bahnen zu lenken. Insgesamt sei Forschungsförderung zwar wichtig, allerdings sei ein Markt die Voraussetzung dafür, dass tragfähige neue Geschäftsmodelle überhaupt erst entstehen können. Werner Neumann, BUND, bemängelte, dass es einen echten Markt im Energiebereich bisher aufgrund falscher Weichenstellungen in der Vergangenheit nicht gebe. Er empfahl Deinvestments aus fossilen Energien; mit 1% des BIP sei die Energiewende finanzierbar – eine Zahl, die Hans-Martin Henning, Fraunhofer ISE, auf Basis eigener Rechenmodelle bestätigte.

170531_dechema_108

Dr. Georg Menzen (Bundesministerium für Wirtschaft und Energie): „Wir brauchen eine europäische Lösung.“

Doch Deutschland ist keine Insel. Die Abwanderung der Solarenergie hat gezeigt, welche Gratwanderung zwischen der Entstehung eines freien Marktes und der Steuerung  besteht. Lösungen sind deshalb nur international, mindestens europäisch machbar. Jens Kanacher von Innogy plädierte dafür, alles, was heute schon möglich ist, zu elektrifizieren, dabei aber die Stromimporte zu reduzieren und internationale Standorte (z. B. für die Herstellung von E-Fuels) zu nutzen. Das funktioniert jedoch nur, wenn die Rahmenbedingungen überall gleich sind – und wenn alle Sektoren gleich behandelt werden. Dafür könnte eine CO2-Steuer sinnvoll sein.
Hans-Martin Henning, Fraunhofer ISE, wies auf die positiven Entwicklungen hin: Gewaltige Kostensenkungen sind für Photovoltaik, Windenergie und Wärmekonzepte für Gebäude bereits erreicht worden. Günstige Komponenten der Leistungselektronik müssten der nächste Schritt sein.

170531_dechema_117

Dr. Hans-Martin Henning (Fraunhofer ISE): „Der Umstieg passiert nicht von alleine. Wir sollten nicht nur über Kosten reden, sondern auch über Chancen.“

Dass das Thema Energiewende komplex bleibt, zeigte auch die abschließende Diskussion mit dem Publikum. Was ist für die Biodiversität und die Vogelwelt schlimmer – Klimawandel oder Windräder? Ist Geld zur Erreichung kurzfristiger Klimaziele gut angelegt, oder sollte es lieber in langfristige Technologieentwicklung fließen? Wohin führt der Kohleausstieg – zu mehr Abhängigkeit von Gasimporten oder Methanförderung in der Tiefsee? Am Ende blieb die Erkenntnis, die Robert Schlögl in einem Satz zusammenfasste: „Die Energiewende scheitert nicht an den Chemikern und auch nicht an den Technologen, sie scheitert an der Gesellschaft.“ Diese gesellschaftliche Diskussion, auch generationenübergreifend, weiterzuführen, bezeichnete Kurt Wagemann in seinem Schlusswort als Aufgabe für die DECHEMA.

Read Full Post »

Diese Diashow benötigt JavaScript.

Read Full Post »

Older Posts »