Feeds:
Beiträge
Kommentare

Archive for the ‘Chemical Engineering’ Category

carbonnext_logo_4c_300dpi-300x83Die DECHEMA untersucht bereits seit vielen Jahren die technischen Optionen, um das Treibhausgas CO2 industriell nachhaltig zu nutzen. Die Anwendungsfelder, bei denen CO2 als Synthesebaustein genutzt werden kann, reichen in der chemischen Industrie von Kunststoffen bis hin zu Kraftstoffen der Petrochemie.  Des Weiteren besteht ein hohes Potenzial, CO2 in der Baubranche als Komponente von Baumaterialen einzusetzen. Die Prozesse zur stofflichen Nutzung von CO2 sind eine Herausforderung an sich; eine weitere ist es, die besten Quellen von CO2 für jeden der spezifischen Prozesse und deren Produktionsstandorte zu bewerten.  Im Projekt CarbonNext, eine „Coordination and Support Action“ im H2020 Forschungsprogramm der EU, angesiedelt in SPIRE, untersucht die DECHEMA mit Hilfe der Projektpartner University of Sheffield aus England und Trinomics BV aus den Niederlanden, alternative Kohlenstoffquellen für die Prozessindustrie und andere Rohöl-konsumierende Sektoren in Europa. Dabei soll analysiert werden, welche Quellen für welchen Prozess und Standort am geeignetsten ist. Das Hauptaugenmerk liegt auf CO2 und CO aus industriellen Abgasen, des Weiteren werden nicht konventionelle Kohlenstoffquellen wie Schiefergas, Ölsand, Methangewinnung aus Kohleflözen oder Power-to-liquid- und Power-to-coal-Technologien bewertet. (mehr …)

Read Full Post »

dechema-big-data-small-web2

„More than 50% of the companies are not willing to invest in Big Data Applications. These companies will go bankrupt over the next 10 years“. A provoking statement made by Thomas Froese from atlan-tec, a software developing company specializing on process optimization and data mining. And yet, there are many who share his view: Huub Rutten,Sopheon, points in the same direction when he says that „companies that think Big Data Analytics is something for their marketing department, and not relevant to all other functions, will not have a long life anymore.“

The awareness in the process industry is there: According to Accenture’s Digitals Chemicals Survey in 2014, 79% of chemical industry executive expected digital to make the greatest impact over the next five years through improved productivity. On the other hand, only 58% were embracing digital to gain a competitive advantage over industry peers. Taking the expert statements on competitiveness into account, there seems to exist a potentially dangerous gap – big data is introduced, but it might in some cases be too little, too late.

Predictive Big Data Analytics and Machine Learning will transform most industries by supporting better informed and more customized decisions by both, humans and machines, increasing agility and efficiency, lowering costs, enabling better and more customized products and services, forecasting risks and opportunities, and increasing automation. Early adopters will gain significant competitive advantages, while others are likely to be left behind.

Ralf Klinkenberg, RapidMiner

Big Data analytics has become more and more important to the process industries. Sure, the process industry has always collected data to supervise production processes, to identify disturbances, and to ensure product quality, and this will continue.

The application of data analytics will improve efficiency in the chemical industry!

Matthias Hartman, ThyssenKrupp System Engineering

But with the tremendous increase in data storage and processing capacities, new algorithms have become accessible. They open up new market opportunities, enabling process advantages and cost reductions within the production, decreasing time to market and, ultimately, making new customized and individualized products accessible. The application areas in which data analytics can be used profitably are diverse and in process industries nowhere near exhausted.

In the process industry, digital technology provides actionable solutions to challenges and groundbreaking opportunities for innovation.

Matthias Feuerstein, Microsoft

Provided the data is collected, analyzed and used intelligently and efficiently, as Benjamin Klöpper, ABB Research Center, points out:The major challenge for Big Data Analytics in Process Industries are not scalable architectures or clever algorithms, but remains to have the right data in the right quality to address relevant and pressing issues. Today’s information system infrastructure often prevent us often from obtaining this right data in an efficient data.“ Adds Nico Zobel, Fraunhofer IFF: „One of the major challenges will be to generate use cases of the analysis of data from heterogeneous sources.” And the sources in the chemical industry are nearly endless.

Chemical space is big. Very big. Published and unpublished data only cover only an exceedingly small part of possible small molecule space. Machine learning and algorithmic prediction tools can help fill in the explored parts of chemical space. What kinds of data sources and prediction tools will come next?

David Flanagan,  Wiley ChemPlanner

Jens Kamionka, T-Systems Multimedia Solutions, widens the scope by taking security issues into account – a major challenge in times of increasing cyberattacks: „Many companies still fail to address security, infrastructure or data quality issues.” Concepts that allow one the one hand the company-wide or even inter-company integration of data streams along value chains, at the same time preventing data leaks and cyberattacks, are the intensely sought after.

And once these questions are solved – are we looking at a future with fully automized, smart plants that anticipate customers’ wishes before they are even aware of them? No, according to the experts. Human intelligence will always have its place. „Big Data opens up many opportunities in different areas of a chemical company. Besides toolsets and technology, mind-set and communication skills are additional success factors for these novel approaches”, says Sindy Thomas, Clarian. And Drazen Nikolic from Ernst & Young sums it up:““If you do not understand the problem, you are not able to frame the right question. “

quadratisch-praxisforum_blau_4c

Meet these and other experts and discuss what Big Data analytics might mean for your business at the DECHEMA-PRAXISforum “Big Data Analytics in Process Industry”, 1-2 February 2017, Frankfurt. For the full program and registration, click here DECHEMA-PRAXISforum Big Data Analytics in Process Industry

Read Full Post »

Achema_Gruenderpreis_positiv_BildschirmZum zweiten Mal sind unternehmungsfreudige Wissenschaftler, zukünftige Gründer und Inhaber von Start-Ups aufgerufen, sich um den ACHEMA-Gründerpreis zu bewerben. Ab sofort können Ideen, Konzepte und Businesspläne aus den Bereichen Chemie, Verfahrenstechnik und Biotechnologie eingereicht werden. Die Finalisten haben die einmalige Chance, sich im Rahmen der ACHEMA 2018 dem internationalen Fachpublikum zu präsentieren. Drei Gesamtsieger erhalten darüber hinaus je ein Preisgeld von 10.000 Euro. 

Alle weiteren Informationen auf www.achema.de/gruenderpreis.

Die chemische Industrie ist Innovationsmotor für zahlreiche andere Branchen. Innovationen in Chemie, Verfahrenstechnik und Biotechnologie können Technologien und Produkte auf breiter Ebene grundlegend verbessern. Doch die Zahl der Firmenneugründungen in diesen Bereichen ist niedrig. Gute Ideen und junge Unternehmer brauchen mehr Unterstützung beim Erschließen neuer Geschäftsfelder; dabei sind der Zugang zu erfahrenen Mentoren und die Möglichkeit, Kontakte zu knüpfen, als mindestens ebenso wichtig anzusehen wie finanzielle Aspekte.

Deshalb schreiben die DECHEMA, die Business Angels FrankfurtRheinMain und der High-Tech Gründerfonds zur ACHEMA 2018 zum zweiten Mal den ACHEMA-Gründerpreis aus. Ideengeber und Unternehmensgründer können sich ab sofort darum bewerben. Abweichend von der ersten Vergabe 2015 besteht diesmal keine Einschränkung auf bestimmte Kategorien; zugelassen sind alle Themen, die auch auf der ACHEMA vertreten sind, vom Anlagenbau bis zur industriellen Biotechnologie.

Der Wettbewerb läuft über drei Phasen – bis 31.3.2017 können Ideen, bis 31.7.2017 Konzepte und bis 31.11.2017 Businesspläne vorgelegt werden. Besonders in den frühen Phasen haben die Bewerber von Beginn an die Möglichkeit, mit hochrangigen fachlich versierten Mentoren ihre Konzepte zu diskutieren und auf dieser Basis Unterstützung für die Ausarbeitung ihrer Businesspläne zu bekommen. Die Bewerber sowie nach dem 1.7.2015 gegründete oder in Gründung befindliche junge Start-Ups sollen schon in dieser frühen Phase Zugang zu potenziellen Investoren bekommen, um die Möglichkeiten einer Finanzierung zu besprechen. Unabhängig vom Zeitpunkt des Einstiegs in den Wettbewerb gehen alle Businesspläne, die bis zum 30. November 2017 vorliegen, ins Rennen um die Finalplätze.

Bis zu zehn aussichtsreiche Gründungen bzw. Gründungsideen erhalten die Möglichkeit, sich auf der ACHEMA 2018 im Rahmen eines Gründerpreisstandes sowie einer speziellen Pitchsession vorzustellen und Kontakte zu knüpfen. Drei Gesamtsieger erhalten darüber hinaus ein Preisgeld in Höhe von je 10.000 Euro.

Träger des ACHEMA-Gründerpreises sind die DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V., die DECHEMA Ausstellungs-GmbH, die Business Angels FrankfurtRheinMain e.V. und der High-Tech Gründerfonds. Unterstützt wird der ACHEMA-Gründerpreis zudem von der Gesellschaft Deutscher Chemiker (GDCh), dem Verein Deutscher Ingenieure (VDI), dem Verband der Chemischen Industrie (VCI) und der Arbeitsgemeinschaft industrieller Forschungsvereinigungen (AiF) sowie dem Business Angels Netzwerk Deutschland, eXist und dem Wettbewerb GO-Bio.

Read Full Post »

enzymes-bannerOk, it’s not magic but “hard science” – nonetheless, the performance of enzymes in some applications is really breathtaking, especially compared to “conventional” chemical synthesis routes. As research and development advance and ever more processes make it into industrial applications, some trends emerge that might lead the way for the development of the industry.

  • Combination is key

Even though enzymes are highly selective and can perform reactions that are hardly accessible to the synthetic chemist, there are also reactions where chemical catalysts are superior. Thus, the combination of chemical and enzymatic steps is the key to efficient synthetic pathways. Researchers are working on reaction cascades in one-pot systems with compartments where different steps are performed successively without cost-intensive intermediary purifications steps. To avoid solvent incompatibilities – enzymatic reactions usually require aqueous systems, organic chemical reactions are run in organic solvents – gel matrices have been successfully employed.

  • Unlock nature’s tool kit

While “engineered” enzymes may offer perfect properties, there remain applickey-1020000_640ations e.g. in the food industry calling for naturally-occuring enzymes. Fortunately, nature’s tool kit has an almost unlimited supply of different enzymes – turning the identification into the literal search in the haystack. Modern bioinformatics, a better understanding of metabolic pathways and genome mining methods allow for the screening of tens of thousands of genomes to find the right sequence and, hence, the most appropriate natural enzyme.

  • Design your own

Thanks to growing information on the structural biology of proteins, powerful bioinformatics and the integration of databases “tailor-made” enzymes have become more easily accessible. However, designing enzymes and enzymatic systems with desired properties, is still labour-intensive and time-consuming, especially with regard to structural analyses.

  • Leash your enzyme to unleash its potentialdog-1015660_640

Currently, cost is a major hurdle for the use of enzymes, especially if they cannot or only at high cost be recovered from the reaction. Immobilisation is the solution to this problem. A number of methods is available, ranging from the adsorption or covalent binding to mostly  textile carrier materials or covalent links between the enzyme molecules. Another principle is the encapsulation of enzymes in polymer networks or membranes. However, as the performance of an enzyme depends on its tertiary and quarternary structure, enzyme activity may be influenced negatively by the immobilisation. Other problems include steric factors hindering substrate access to the catalytic center. Thus, experts are still searching for more general immobilization procedures that reduce cost and allow for more or less “standardized” process designs.

  • Regard the bigger picture

Even the best enzymatic process is limited by poor reaction technology. Reactor designs that allow for tapping the full potential of the kinetics of enzymatic reactions are still being explored. The challenge lies not least in ensuring maximum mass transfer with minimum shearing of the enzyme-carriers. Thus,chemistry-1027781_640 the cooperation of biotechnologists, organic chemists and process engineers is crucial to ensure the most efficient – and consequently competitive process.

Do you want to know more? Join the PRAXISforum “Enzymes for Industrial Applications” on 8-9 November 2016 in Frankfurt

Read Full Post »

Nachwuchswissenschaftler aus ganz Deutschland trafen sich zur NaWuReT-Summerschool in Bayreuth Dr.-Ing. Florian Heym, Chemische Verfahrenstechnik, Universität Bayreuth Die Verfügbarkeit von Ressourcen ist für die chemische Industrie von zentraler Bedeutung. Deshalb stellt sie der Rohstoffwandel vor große Herausforderungen. Die Umsetzung unterschiedlichster Rohstoffe stellt dabei hohe Anforderungen an die Reaktionstechnik. Zu dieser Thematik veranstaltete der Nachwuchs der […]

über Ressourcen und Rohstoffwandel – Was kann die Reaktionstechnik zur Sicherung unserer Zukunft leisten? — ProcessNet – Wir schaffen Zukunft!

Read Full Post »

Politische Vorgaben zur Erreichung von Klimazielen, Energieeffizienz, Elektromobilität und ein gesteigertes Umweltbewusstsein spiegeln sich auch in der industriellen Fertigung wider. Leichtbauelemente spielen deshalb in der Fahrzeugproduktion und überall dort, wo Gewicht und Energie eingespart werden sollen, eine zentrale Rolle. Faserverstärkte Kunststoffe haben sich hier bewährt. In Kombination mit Stahlverbindungen werden sie in der Automobilindustrie sowie beim Bau von Nutz- und  Schienenfahrzeugen, Schiffen und Flugzeugen eingesetzt. Damit gewähmonorail-1636401_1920rleistet ist, dass die Klebeverbindungen nicht versagen und allen Anforderungen an Sicherheit und Belastbarkeit genügen, sind umfangreiche und kostspielige Testreihen notwendig.

In einem aktuellen Forschungsprojekt der industriellen Gemeinschaftsforschung entwickeln Wissenschaftler der Universitäten Paderborn und Kassel ein Simulationsmodell, um das Versagen der Klebschicht bzw. der Faserstrukturen zuverlässig vorherzusagen. Damit können Gestaltungs- und Auslegungsrichtlinien erstellt werden. Davon profitieren vor allem kleine und mittelständische Unternehmen. Sie können künftig aufwändige Testreihen reduzieren und wirtschaftlicher produzieren.

Ob der Klebstoff optimal auf dem Substrat haftet, hängt von der geometrischen Struktur der Oberfläche und der Ausrichtung der Fasern in den Kunstoffen ab. Die Klebverbindung kann entweder an der Grenzschicht oder im Innern der faserverstärkten Kunststoffe versagen. Solche Szenarien können mit Finite-Elemente-Analysen berechnet werden. Dabei wird der zu untersuchende Bereich in kleine Teilregionen, die Finiten Elemente aufgeteilt. Die Finite-Elemente-Analyse beruht auf dem Lehrsatz, dass belastete Strukturen sich so verformen, dass die potentielle Energie des Systems minimiert wird. Um das Deformationsverhalten zu beschreiben, gibt es eine Vielzahl von Elementtypen, die in Datenbanken hinterlegt sind. Damit künftig eine virtuelle Produktentwicklung und –prüfung auch für faserverstärkte Kunststoffe möglich ist, erarbeiten die Wissenschaftler in diesem Projekt entsprechende Simulationsmodelle.

Weitere Informationen zum Projekt Experimentelle und numerische Untersuchungen zum Versagensverhalten von kalt ausgehärteten Stahl-FVK-Klebverbindungen unter schlagartiger Belastung 18337 N

Read Full Post »

Direkt zum Whitepaper Digitalisierung der Chemieindustrie

Digitalisierung ist in aller Munde – aber was damit gemeint ist, reicht vom Kühlschrank, der die Milch nachbestellt, bis zur automatisierten Fertigungsstraße, die die Stoßstange vor Montage blau, gelb oder grün lackiert. Auch in Verbindung mit der chemischen Industrie ist immer häufiger von Digitalisierung oder „Chemie 4.0“ die Rede. Das war der DECHEMA Anlass, um den Jahreswechsel 2015/16 eine Befragung in den rund 120 DECHEMA- und ProcessNet-Gremien durchzuführen und einen Thementag Digitalisierung mit deren Vertretern zu organisieren.

Digital integrierter Standort2.jpgDie Befunde waren teils überraschend: Zwar spielt Digitalisierung in fast allen Unternehmen und Organisationen eine Rolle, wurde aber bis dahin kaum in den Gremien diskutiert. Auch das Verständnis, was Digitalisierung bedeutet, ging sehr weit auseinander. High-Throughput-Technologie, „klassische“ Mess- und Regeltechnik, flexible Produktion, e-learning waren nur einige Schlagworte, die genannt wurden.

Diese Rückmeldungen und die Ergebnisse des Thementags im Februar 2016 wurden in den letzten Wochen gesichtet, geordnet und systematisiert. Die Ergebnisse wurden zudem in Beziehung gesetzt zu Papieren, die in der jüngeren Vergangenheit in verschiedenen Gremien publiziert wurden.

Daraus ist ein Whitepaper Digitalisierung entstanden, das heute kurz vorgestellt wird. Anliegen dieses Papiers ist es, die verschiedenen Themenbereiche der Digitalisierung und ihre Auswirkungen in Bezug zur chemischen Industrie zu setzen.

Auf den ersten Blick ist die chemische Industrie heute bereits in vielen Bereichen stark „digitalisiert“. Die wirklichen Veränderungen, die durch große Datenmengen, hohe Rechnerkapazitäten und neue Algorithmen möglich werden, stehen aber noch bevor:

Vermehrte Integration von Standorten und standortübergreifenden Systemen, aber auch die Entwicklung disruptiver Produktinnovationen auf Basis gewonnener Daten setzen die Kopplung interner und externer Daten (Kundendaten) voraus. Doch bislang gibt es Widerstände mit Blick auf Datensicherheit und kritisches Wissen, die diese Zusammenarbeit behindern. Diese Hürden können nur gemeinsam und auf Basis klarer Absprachen und nicht zuletzt Vertrauen überwunden werden.

Von der digitalen Transformation wird auch die modulare Produktion profitieren, da vielfach die Produktion flexibler werden muss. Modulare Produktionsanlagen können vor allem dort ihre Stärken ausspielen, wo viele unterschiedliche Reaktionsschritte nötig sind und nur geringe Mengen eines hochwertigen Produktes hergestellt werden, also insbesondere in der Fein- und Spezialchemie. Doch um eine ökonomisch sinnvolle Produktion sicherzustellen, sind noch viele Entwicklungsschritte notwendig. Insbesondere standardisierte Module und Datenschnittstellen werden benötigt, um beispielsweise ein einfaches “Plug&Play” und die digitale Kommunikation der modularen Anlagen untereinander zu ermöglichen.

Nur so ist ein schneller Austausch von Modulen möglich. Gleichzeitig gilt es auch, große Datenmengen („Big Data“), wie sie beispielsweise Echtzeitsensor-Netze liefern, zu analysieren. Für all diese Anforderungen benötigt die chemische Industrie neben der entsprechenden Hardware und geeigneten Algorithmen auch qualifiziertes Fachpersonal („Chemotroniker“, „IT-Chemiker“).

Produktionsseitig ist in der Fein- und Spezialchemie seit Jahren ein Trend zu modularer und kontinuierlicher Produktion auszumachen. Diese bei weitem noch nicht abgeschlossene Entwicklung soll der Branche dabei helfen, den zunehmend individuellen Kundenansprüchen zeitnah und ökonomisch zu entsprechen. Neuartige digitale Steuerungselemente und –software sind hierbei wichtig, um tatsächlich ökonomisch in Kleinstmengen individuell zu produzieren.

Neben all den genannten Beispielen liegt für die Chemiebranche das wahrscheinlich größte Entwicklungspotential in digitalen Service-orientierten Geschäftsmodellen. Die Weiterentwicklung der Agrarchemie hin zu einer Service-orientierten Branche, die dem Kunden einen Mehrwert durch die Kombination von Daten (Wetter, Schädlingsbefall, Bodenbeschaffenheit) und Agrarchemieprodukten verkauft, zeigt beispielhaft auf, welche Möglichkeiten in der Fein- und Spezialchemiebranche bestehen, bestehende Geschäftsmodelle weiter zu entwickeln und neue zu schaffen – unerlässliche Schritte zur Sicherung des Innovations- und Produktionsstandortes Deutschland. Wir wollen mit diesem Whitepaper auch einen Anstoß geben, die Diskussion über neue Geschäftsmodelle, die in unserer Industrie erst begonnen hat, weiter zu intensivieren und die Chancen zu nutzen.

Soweit in Kürze das Zwischenfazit des Whitepapers. Es handelt sich um eine „Work in Progress“ – auch deshalb haben wir davon abgesehen, es in gedruckter Form zu verteilen. Es ist stattdessen im DECHEMA-Blog veröffentlicht, wo wir uns Rückmeldungen und Ergänzungen aus unserer Community wünschen. Wir denken dabei auch an die Experten, die in den einzelnen Unternehmen intensiv mit der Digitalisierung befasst sind – auch wenn sich das Whitepaper im Ergebnis weniger an diese richtet, sondern eher an all die Mitarbeiterinnen und Mitarbeiter der Prozessindustrie, für die die Digitalisierung bislang ein großes, aber wenig greifbares Thema ist.

Wir freuen uns, wenn auch Sie als Fachmedien unsere Einladung annehmen, sich an der Entwicklung einer stringenten Vision einer digitalisierten Chemieindustrie zu beteiligen.

Zum whitepaper-digitalisierung_final

 

Read Full Post »

Older Posts »