… sagt Harun Tüysüz, Katalyseforscher am MPI für Kohlenforschung in Mülheim und DECHEMA-Preisträger 2019. Den DECHEMA-Preis wird er am 27. August 2020 im Rahmen einer hybriden Veranstaltung entgegennehmen (Anmeldung zum DECHEMA-Prize 2019). Wir haben uns mit ihm über seine Forschung, seine „Traumreaktion“ und die Vision von einer treibhausgas-neutralen Chemieindustrie unterhalten. Im heutigen ersten Teil des Interviews erfahren Sie mehr darüber, welche Faktoren die Katalysator-Aktivität beeinflussen und was Harun Tüysüz an seiner Arbeit besonders gut gefällt.
Herr Tüysüz, das Spektrum Ihrer Forschungsarbeiten ist unglaublich breit. Gibt es so etwas wie einen kleinsten „gemeinsamen Nenner“? Einen Bereich, den man als Ausgangspunkt für Ihre Forschung bezeichnen könnte?

Ich gebe Ihnen Recht, von außen betrachtet erscheint meine Forschungsrichtung sehr breit. Im Kern beschäftige ich mich jedoch mit dem Design und der Entwicklung von Katalysatoren mit sehr genau definierter Nanostruktur und deren Anwendung im Bereich nachhaltiger Energie.
Hierbei haben wir ein klar definiertes Ziel: Ob CO2-Aktivierung, elektrochemische Wasserspaltung oder sogar der Halogenid-Perowskit-Katalysator – letztlich versuchen wir immer, eine Verbindung zwischen der Struktur und ihrer katalytischen Aktivität zu finden. Damit definieren wir die Struktur-Aktivitäts-Korrelation durch die Syntheseparameter und schlussendlich auch ihre katalytische Aktivität und Anwendung.
Welche Rolle spielt denn die Struktur überhaupt für den Katalysator? Man könnte ja denken, dass bei der Katalyse eigentlich nur die Oberfläche ausschlaggebend ist und vielleicht noch, wie gut das Molekül dort hinkommt. Aber tatsächlich geht es um mehr als das?
Es geht auf jeden Fall um mehr. Natürlich gibt es Reaktionen, die sehr empfindlich auf die Struktur und die physikalischen Eigenschaften der Materialien reagieren. Ein Beispiel: die Fischer-Tropsch-Katalyse, die hier am Max-Planck-Institut entdeckt wurde. Bei dem Verfahren kann mithilfe von Kobalt-Nanopartikeln Kohlenmonoxid mit Wasserstoff zu Kohlenwasserstoffverbindungen umgewandelt werden. Es gibt dabei einen Trend, der besagt, „je kleiner der Nanopartikel, desto aktiver und besser ist der Katalysator“. Für diesen gibt es aber eine Grenze: unterhalb einer Partikelgröße von 6-7 Nanometern verringert sich die Aktivität des Katalysators wieder. Das ist eine sehr spezifische Eigenschaft der Fischer-Tropsch-Katalysatoren, die auch für andere Reaktionen gelten kann. Neben der Struktur spielen also die Zusammensetzung, die Morphologie, die Porosität, die Oberfläche, die Partikelgröße, die Partikelform und die Defekte sehr wichtige Rollen in der heterogenen Katalyse.
Es gibt also viel mehr Faktoren als die Partikelgröße?

Absolut! Morphologie, Partikelgröße und Form sind alles wichtige Parameter, die eine große Rolle in der Katalyse spielen können. Während einer chemischen Reaktion sind die Wechselwirkungen zwischen den Katalysatoren und den Reaktanden sowie deren Adsorptions- und Desorptionsenergien sehr stark von der Form und den Facetten der Katalysatoren abhängig. Wenn Sie einen Katalysator haben, der an der Oberfläche Würfel-, Oktaeder- oder Pyramidenstrukturen bilden kann, werden Sie je nach Oberflächenstruktur unterschiedliche Aktivitäten und auch Produktselektivitäten beobachten.
Man könnte also anhand der Katalysatorstruktur vorhersagen, wie ein Reaktion abläuft bzw. welche Struktur man für ein gewünschtes Ergebnis bräuchte. Wie gut versteht man diesen Zusammenhang denn schon?
Für viele Reaktionen lässt sich das bereits mithilfe des entsprechenden theoretischen Hintergrundwissens vorhersagen. Aber es gibt auch immer noch viele Fälle in der Katalyseforschung, in denen das Ergebnis am Ende eine Überraschung ist.
Wenn Sie wie beispielsweise bei der Wasserspaltung in eine neue Richtung forschen, können sich die tatsächlichen Ergebnisse stark von Ihren Anfangsannahmen unterscheiden. Sie können zwar ungefähr berechnen, welche Aktivität oder Stromstärke Sie von einer bestimmten Elektrokatalyse erwarten, doch Aspekte wie die Kinetik, die Diffusion oder der Stofftransport können dazu führen, dass das Resultat weit von dem abweicht, was Sie erwartet haben.
Die Katalyseforschung ist ein sehr großes Feld mit viel Theorie und immer noch unvorhersehbaren Ergebnissen – was fasziniert Sie besonders daran?

Die Katalyseforschung ist ein Bereich mit einer langen und reichen Geschichte. Sie wird eine noch strahlendere Zukunft haben, da die Herausforderungen unserer Gesellschaft mehr Unterstützung erfordern. Sie ist auch der Schlüssel zur Schaffung einer sicheren, nachhaltigeren und umweltverträglichen Zukunft.
Die Katalyseforschung ist sehr interdisziplinär und erstreckt sich über weite Bereiche der Chemie, Biochemie, Biotechnologie, Chemietechnik und Materialwissenschaften. Ungefähr 90% aller hergestellten Materialien beinhalten auf der einen oder anderen Stufe ihrer Herstellung mindestens einen katalytischen Prozess. Es beeindruckt mich, wie breit das Feld der Katalyse gefächert ist und wie sehr sie unser tägliches Leben beeinflusst, manchmal ohne dass wir es wissen.
Ich glaube, die große Faszination meiner Arbeit ist, dass kein Tag dem anderen gleicht. Jeder Tag im Büro birgt neue Herausforderungen. Die stete Weiterentwicklung fasziniert mich – jeden Tag ergeben sich neue Puzzleteile, die wir dann am Ende zu einem großen Bild zusammenbauen, um so Lösungen für wissenschaftliche Probleme liefern zu können.
Wo sehen Sie denn die größten Hürden bei Ihrer Arbeit?
Die größte Herausforderung für die Katalysegemeinschaft ist die Beobachtung der katalytischen Reaktion unter Betriebsbedingungen. Dies liefert wesentliche Erkenntnisse über die Veränderung der Katalysatoren, ihre Aktivierung oder Deaktivierung. Wir brauchen die Entwicklung fortschrittlicherer analytischer Techniken, um mehr Einblick in die katalytische Reaktion- und den Reaktionsmechanismus sowie die Bestimmung der aktiven Zentren zu ermöglichen.

Für meine Arbeit sehe ich die größten Hürden, um ehrlich zu sein, tatsächlich im nicht-wissenschaftlichen Bereich. Das betrifft vor allem die Bürokratie und den unnötigen Papierkram. Der zweite große Punkt sind die Schwierigkeiten, wenn es darum geht, Finanzmittel für die Grundlagenforschung zu gewinnen. Ich gebe Ihnen dafür gern ein Beispiel: Nobelpreisträger Otto Warburg hat Anfang 1921 einen Antrag bei der DFG eingereicht. Dieser Antrag bestand aus einem einzigen Satz: „Ich benötige 10.000 (zehntausend) Mark.“ Dieser Antrag wurde bewilligt und Otto Warburg hat am Ende die benötigten Mittel erhalten.
Wenn ich heutzutage einen Antrag auf Fördermittel stellen möchte, dann dauert das Verfahren extrem lang, häufig 8-12 Monate. Es kann Jahre dauern, bis man tatsächlich Mittel für eine neue Forschungsrichtung bekommt. Wenn es dann soweit ist, sind andere Wissenschaftler oder Länder vielleicht schon gar nicht mehr an diesem Thema interessiert. Ohne konkrete Anwendung ist es ebenfalls schwierig, an Fördermittel zu kommen. Dabei ist es sehr wichtig, die Grundlagenforschung in Deutschland zu unterstützen. Wenn man heute ein Chemiebuch zur Hand nimmt, beruht fast alles Wissen darin auf Grundlagenforschung. Das müssen wir erhalten.
Ich merke schon, die Hürden in Ihrer Arbeit beziehen sich weniger auf die Forschung, sondern eher auf das Drumherum.
Mit der Forschung bin ich sehr zufrieden. Ich arbeite am Max-Planck-Institut und wir haben eine sehr gute Infrastruktur vor Ort. Wir erhalten zudem viel Unterstützung von der zentralen Max-Planck-Gesellschaft. Außerdem ist das MPI für Kohlenforschung eine Stiftung, die sich zum Teil durch alte Patente zum Beispiel für die Polyethylen-Herstellung finanziert. Wissenschaftlich geht es uns also sehr gut.
Lesen Sie nächste Woche im zweiten Teil des Interviews, wie Harun Tüysüz die Chancen für eine treibhausgas-neutrale chemische Industrie bis 2050 einschätzt, was dafür gebraucht würde und welchen Katalysator er sich von einer guten „Wissenschafts-Fee“ wünschen würde.
[…] « „Wir müssen etwas anders machen als bisher“ […]